7 resultados para Plant Root Nodulation

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host's root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper. Results: The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant's root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology. Conclusions: This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The herbicide propanil has long been used in rice production in southern Brazil. Bacteria isolated from contaminated soils in Massaranduba, Santa Catarina, Brazil, were found to be able to grow in the presence of propanil, using this compound as a carbon source. Thirty strains were identified as Pseudomonas (86.7%), Serratia (10.0%), and Acinetobacter (3.3%), based on phylogenetic analysis of 16S rDNA. Little genetic diversity was found within species, more than 95% homology, suggesting that there is selective pressure to metabolize propanil in the microbial community. Two strains of Pseudomonas (AF7 and AF1) were selected in bioreactor containing chemotactic growth medium, with the highest degradation activity of propanil exhibited by strain AF7, followed by AF1 (60 and 40%, respectively). These strains when encapsulated in alginate exhibited a high survival rate and were able to colonize the rice root surfaces. Inoculation with Pseudomonas strains AF7 and AF1 significantly improved the plant height of rice. Most of the Pseudomonas strains produced indoleacetic acid, soluble mineral phosphate, and fixed nitrogen. These bacterial strains could potentially be used for the bioremediation of propanil-contaminated soils and the promotion of plant growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Araucaria angustifolia, a unique species of this genus that occurs naturally in Brazil, has a high socio-economic and environmental value and is critically endangered of extinction, since it has been submitted to intense predatory exploitation during the last century. Root-associated bacteria from A. angustifolia were isolated, selected and characterized for their biotechnological potential of growth promotion and biocontrol of plant pathogenic fungi. Ninety-seven strains were isolated and subjected to chemical tests. All isolates presented at least one positive feature, characterizing them as potential PGPR. Eighteen isolates produced indole-3-acetic acid (IAA), 27 were able to solubilize inorganic phosphate, 21 isolates were presumable diazotrophs, with pellicle formation in nitrogen-free culture medium, 83 were phosphatases producers, 37 were positive for siderophores and 45 endospore-forming isolates were antagonistic to Fusarium oxysporum, a pathogen of conifers. We also observed the presence of bacterial strains with multiple beneficial mechanisms of action. Analyzing the fatty acid methyl ester (FAME) and partial sequencing of the 16S rRNA gene of these isolates, it was possible to characterize the most effective isolates as belonging to Bacillaceae (9 isolates), Enterobacteriaceae (11) and Pseudomonadaceae (1). As far as we know, this is the first study to include the species Ewingella americana as a PGPR. (C) 2011 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to characterize the anatomical events and ultrastructural aspects of direct and indirect in vitro organogenesis in Passiflora edulis. Root explants were cultured on induction medium, supplemented with 4.44 mu M 6-benzyladenine. Roots at different stages of development were collected and processed for observation by light microscopy and scanning and transmission electron microscopy. Patterns of direct and indirect regeneration were observed in the explants. During direct organogenesis, the organogenic buds and nodules, formed from meristemoids, originated from the pericycle regions distant from the cut surface. Completely differentiated buds were observed after 20 days of culture. During indirect organogenesis, bud formation occurred via meristemoids at the periphery of the calli, which differentiated from the cortical region of the initial explant. Regardless of the regeneration pattern, the meristemoids had similar ultrastructural characteristics; however, differences were reported in the nuclear shape of the cells of the meristemoids formed directly and indirectly. This study provides important information for enhancing the understanding and characterization of the organogenic process in non-meristematic explants and provides information on the use of roots as explants in genetic transformation protocols for this important tropical species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. Methodology/Principal Findings: We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. Conclusions/Significance: Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this ubiquitous endophyte with the host plant, and also to a better use of microbial endophytes in agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajo's National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented. Citation: Ivanov, V. Y., L. R. Hutyra, S. C. Wofsy, J. W. Munger, S. R. Saleska, R. C. de Oliveira Jr., and P. B. de Camargo (2012), Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest, Water Resour. Res., 48, W12507, doi:10.1029/2012WR011972.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have demonstrated that volatile organic compounds (VOCs), produced by the yeast Saccharomyces cerevisiae, were able to inhibit the development of phytopathogenic fungi. In this context, the nematicidal potential of the synthetic mixture of VOCs, constituted of alcohols and esters, was evaluated for the control of the root-knot nematode Meloidogyne javanica, which causes losses to crops of high economic value. The fumigation of substrate containing second-stage juveniles with VOCs exhibited nematicidal effect higher than 30% for the lowest concentration tested (33.3 µL g-1 substrate), whereas at 66.6 and 133.3 µL g-1 substrate, the nematode mortality was 100%. The present results stimulate other studies on VOCs for nematode management.