2 resultados para Photoreceptor Cells, Vertebrate

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many animal species make use of ultraviolet (UV) light in a number of behaviors, such as feeding and mating. The goldfish (Carassius auratus) is among those with a UV photoreceptor and pronounced UV sensitivity. Little is known, however, about the retinal processing of this input. We addressed this issue by recording intracellularly from second-order neurons in the adult goldfish retina. In order to test whether cone-driven horizontal cells (HCs) receive UV cone inputs, we performed chromatic adaptation experiments with mono- and biphasic HCs. We found no functional evidence of a projection from the UV-sensitive cones to these neurons in adult animals. This suggests that goldfish UV receptors may contact preferentially triphasic HCs, which is at odds with the hypothesis that all cones contact all cone-driven HC types. However, we did find evidence of direct M-cone input to monophasic HCs, favoring the idea that cone-HC contacts are more promiscuous than originally proposed. Together, our results suggest that either UV cones have a more restricted set of post-synaptic partners than the other three cone types, or that the UV input to mono- and biphasic HCs is not very pronounced in adult animals.