17 resultados para Photochemical smog

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monodentate cis-[Ru(phen)(2)(hist)(2)](2+) 1R and the bidentate cis-[Ru(phen)(2)(hist)](2+) 2A complexes were prepared and characterized using spectroscopic (H-1, (H-1-H-1) COSY and (H-1-C-13) HSQC NMR, UV-vis, luminescence) techniques. The complexes presented absorption and emission in the visible region, as well as a tri-exponential emission decay. The complexes are soluble in aqueous and non-aqueous solution with solubility in a buffer solution of pH 7.4 of 1.14 x 10(-3) mol L-1 for (1R + 2A) and 6.43 x 10(-4) mol L-1 for 2A and lipophilicity measured in an aqueous-octanol solution of -1.14 and -0.96, respectively. Photolysis in the visible region in CH3CN converted the starting complexes into cis-[Ru(phen)(2)(CH3CN)(2)](2+). Histamine photorelease was also observed in pure water and in the presence of BSA (1.0 x 10(-6) mol L-1). The bidentate coordination of the histamine to the ruthenium center in relation to the monodentate coordination increased the photosubstitution quantum yield by a factor of 3. Pharmacological studies showed that the complexes present a moderate inhibition of AChE with an IC50 of 21 mu mol L-1 (referred to risvagtini, IC50 181 mu mol L-1 and galantamine IC50 0.006 mu mol L-1) with no appreciable cytotoxicity toward to the HeLa cells (50% cell viability at 925 mu mol L-1). Cell uptake of the complexes into HeLa cells was detected by fluorescence confocal microscopy. Overall, the observation of a luminescent complex that penetrates the cell wall and has low cytotoxicity, but is reactive photochemically, releasing histamine when irradiated with visible light, are interesting features for application of these complexes as phototherapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balan double dagger o Atmosf,rico Regional de Carbono na Amazonia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm(-3); the highest values were in the southern part of the Basin at altitudes of 1-3 km. The Delta CN/Delta CO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300-500 cm(-3)) prevailed basinwide, and CO mixing ratios were enhanced by only similar to 10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no detectable trend in CO with distance from the coast, but there was a small enhancement of CO in the boundary layer suggesting diffuse biogenic sources from photochemical degradation of biogenic volatile organic compounds or direct biological emission. Simulations of CO distributions during BARCA-A using a range of models yielded general agreement in spatial distribution and confirm the important contribution from biomass burning emissions, but the models evidence some systematic quantitative differences compared to observed CO concentrations. These mismatches appear to be related to problems with the accuracy of the global background fields, the role of vertical transport and biomass smoke injection height, the choice of model resolution, and reliability and temporal resolution of the emissions data base.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the early 20th century, many researchers have attempted to determine how fungi are able to emit light. The first successful experiment was obtained using the classical luciferin-luciferase test that consists of mixing under controlled conditions hot (substrate/luciferin) and cold (enzyme/luciferase) water extracts prepared from bioluminescent fungi. Failures by other researchers to reproduce those experiments using different species of fungi lead to the hypothesis of a non-enzymatic luminescent pathway. Only recently, the involvement of a luciferase in this system was proven, thus confirming its enzymatic nature. Of the 100 000 described species in Kingdom Fungi, only 71 species are known to be luminescent and they are distributed unevenly amongst four distantly related lineages. The question we address is whether the mechanism of bioluminescence is the same in all four evolutionary lineages suggesting a single origin of luminescence in the Fungi, or whether each lineage has a unique mechanism for light emission implying independent origins. We prepared hot and cold extracts of numerous species representing the four bioluminescent fungal lineages and performed cross-reactions (luciferin x luciferase) in all possible combinations using closely related non-luminescent species as controls. All cross-reactions with extracts from luminescent species yielded positive results, independent of lineage, whereas no light was emitted in cross-reactions with extracts from non-luminescent species. These results support the hypothesis that all four lineages of luminescent fungi share the same type of luciferin and luciferase, that there is a single luminescent mechanism in the Fungi, and that fungal luciferin is not a ubiquitous molecule in fungal metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of cytochrome c (cyt c) with cardiolipin (CL) induces protein conformational changes that favor peroxidase activity. This process has been correlated with CL oxidation and the induction of cell death. Here we report evidence demonstrating the generation of singlet molecular oxygen [O-2((1)Delta(g))] by a cyt c-CL complex in a model membrane containing CL. The formation of singlet oxygen was directly evidenced by luminescence measurements at 1270 nm and by chemical trapping experiments. Singlet oxygen generation required cyt c-CL binding and occurred at pH values higher than 6, consistent with lipid-protein interactions involving fully deprotonated CL species and positively charged residues in the protein. Moreover, singlet oxygen formation was specifically observed for tetralinoleoyl CL species and was not observed with monounsaturated and saturated CL species. Our results show that there are at least two mechanisms leading to singlet oxygen formation: one with fast kinetics involving the generation of singlet oxygen directly from CL hydroperoxide decomposition and the other involving CL oxidation. The contribution of the first mechanism was clearly evidenced by the detection of labeled singlet oxygen [O-18(2)((1)Delta(g))] from liposomes supplemented with 18-oxygen-labeled CL hydroperoxides. However quantitative analysis showed that singlet oxygen yield from CL hydroperoxides was minor (<5%) and that most of the singlet oxygen is formed from the second mechanism. Based on these data and previous findings we propose a mechanism of singlet oxygen generation through reactions involving peroxyl radicals (Russell mechanism) and excited triplet carbonyl intermediates (energy transfer mechanism).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A concise synthesis of the (-)-indolizidine alkaloid 167B and two formal syntheses of (-)-indolizidine 209D and (-)-coniceine are described in just three steps from an alpha,beta-unsaturated diazoketone, via an unusual photochemical Wolff rearrangement. Preparation of the unsaturated diazoketone is straightforward from N-Cbz-prolinal and a 3-diazo-2-oxopropylphosphonate, employing a Horner-Wadsworth-Emmons reaction. The strategy should be feasible and easily adaptable to the synthesis of other indolizidine alkaloids and analogues. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titan has clouds, rain and lakes-like Earth-but composed of methane rather than water. Unlike Earth, most of the condensable methane (the equivalent of 5 m depth globally averaged(1)) lies in the atmosphere. Liquid detected on the surface (about 2 m deep) has been found by radar images only poleward of 50 degrees latitude(2,3), while dune fields pervade the tropics(4). General circulation models explain this dichotomy, predicting that methane efficiently migrates to the poles from these lower latitudes(5-7). Here we report an analysis of near-infrared spectral images(8) of the region between 20 degrees N and 20 degrees S latitude. The data reveal that the lowest fluxes in seven wavelength bands that probe Titan's surface occur in an oval region of about 60 x 40 km(2), which has been observed repeatedly since 2004. Radiative transfer analyses demonstrate that the resulting spectrum is consistent with a black surface, indicative of liquid methane on the surface. Enduring low-latitude lakes are best explained as supplied by subterranean sources (within the last 10,000 years), which may be responsible for Titan's methane, the continual photochemical depletion of which furnishes Titan's organic chemistry(9).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mixed ruthenium(II) complexes trans-[RuCl(2)(PPh(3))(2)(bipy)] (1), trans-[RuCl(2)(PPh(3))(2)(Me(2)bipy)](2), cis-[RuCl(2)(dcype)(bipy)](3), cis-[RuCl(2)(dcype)(Me(2)bipy)](4) (PPh(3) = triphenylphosphine, dcype = 1,2-bis(dicyclohexylphosphino)ethane, bipy = 2,2'-bipyridine, Me(2)bipy = 4,4'-dimethyl-2,2'-bipyridine) were used as precursors to synthesize the associated vinylidene complexes. The complexes [RuCl(=C=CHPh)(PPh(3))(2)(bipy)]PF(6) (5), [RuCl(=C=CHPh)(PPh(3))(2)(Me(2)bipy)]PF(6) (6), [RuCl(=C=CHPh)(dcype)(bipy)]PF(6) (7), [RuCl(=C=CHPh)(dcype)(bipy)]PF(6) (8) were characterized and their spectral, electrochemical, photochemical and photophysical properties were examined. The emission assigned to the pi-pi* excited state from the vinylidene ligand is irradiation wavelength (340, 400, 430 nm) and solvent (CH(2)Cl(2), CH(3)CN, EtOH/MeOH) dependent. The cyclic voltammograms of (6) and (7) show a reversible metal oxidation peak and two successive ligand reductions in the +1.5-(-0.64) V range. The reduction of the vinylidene leads to the formation of the acetylide complex, but due the hydrogen abstraction the process is irreversible. The studies described here suggest that for practical applications such as functional materials, nonlinear optics, building blocks and supramolecular photochemistry. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured the mixing ratios of NO, NO2, O-3, and volatile organic carbon as well as the aerosol light-scattering coefficient on a boat platform cruising on rivers downwind of the city of Manaus (Amazonas State, Brazil) in July 2001 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia-Cooperative LBA Airborne Regional Experiment-2001). The dispersion and impact of the Manaus plume was investigated by a combined analysis of ground-based (boat platform) and airborne trace gas and aerosol measurements as well as by meteorological measurements complemented by dispersion calculations (Hybrid Single-Particle Lagrangian Integrated Trajectory model). For the cases with the least anthropogenic influence (including a location in a so far unexplored region similar to 150 km west of Manaus on the Rio Manacapuru), the aerosol scattering coefficient, sigma(s), was below 11 Mm(-1), NOx mixing ratios remained below 0.6 ppb, daytime O-3 mixing ratios were mostly below 20 ppb and maximal isoprene mixing ratios were about 3 ppb in the afternoon. The photostationary state (PSS) was not established for these cases, as indicated by values of the Leighton ratio, Phi, well above unity. Due to the influence of river breeze systems and other thermally driven mesoscale circulations, a change of the synoptic wind direction from east-northeast to south-southeast in the afternoon often caused a substantial increase of ss and trace gas mixing ratios (about threefold for sigma(s), fivefold for NOx, and twofold for O-3), which was associated with the arrival of the Manaus pollution plume at the boat location. The ratio F reached unity within its uncertainty range at NOx mixing ratios of about 3 ppb, indicating "steady-state" conditions in cases when radiation variations, dry deposition, emissions, and reactions mostly involving peroxy radicals (XO2) played a minor role. The median midday/afternoon XO2 mixing ratios estimated using the PSS method range from 90 to 120 parts per trillion (ppt) for the remote cases (sigma(s) < 11 Mm(-1) and NOx < 0.6 ppb), while for the polluted cases our estimates are 15 to 60 ppt. These values are within the range of XO2 estimated by an atmospheric chemistry box model (Chemistry As A Box model Application-Module Efficiently Calculating the Chemistry of the Atmosphere (CAABA/MECCA)-3.0).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar reactors can be attractive in photodegradation processes due to lower electrical energy demand. The performance of a solar reactor for two flow configurations, i.e., plug flow and mixed flow, is compared based on experimental results with a pilot-scale solar reactor. Aqueous solutions of phenol were used as a model for industrial wastewater containing organic contaminants. Batch experiments were carried out under clear sky, resulting in removal rates in the range of 96100?%. The dissolved organic carbon removal rate was simulated by an empirical model based on neural networks, which was adjusted to the experimental data, resulting in a correlation coefficient of 0.9856. This approach enabled to estimate effects of process variables which could not be evaluated from the experiments. Simulations with different reactor configurations indicated relevant aspects for the design of solar reactors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposed role of anthocyanins in protecting plants against excess solar radiation is consistent with the occurrence of ultrafast (525 ps) excited-state proton transfer as the major de-excitation pathway of these molecules. However, because natural anthocyanins absorb mainly in the visible region of the spectra, with only a narrow absorption band in the UV-B region, this highly efficient deactivation mechanism would essentially only protect the plant from visible light. On the other hand, ground-state charge-transfer complexes of anthocyanins with naturally occurring electron-donor co-pigments, such as hydroxylated flavones, flavonoids, and hydroxycinnamic or benzoic acids, do exhibit high UV-B absorptivities that complement that of the anthocyanins. In this work, we report a comparative study of the photophysics of the naturally occurring anthocyanin cyanin, intermolecular cyanincoumaric acid complexes, and an acylated anthocyanin, that is, cyanin with a pendant coumaric ester co-pigment. Both inter- and intramolecular anthocyaninco-pigment complexes are shown to have ultrafast energy dissipation pathways comparable to those of model flavylium cationco-pigment complexes. However, from the standpoint of photoprotection, the results indicate that the covalent attachment of co-pigment molecules to the anthocyanin represents a much more efficient strategy by providing the plant with significant UV-B absorption capacity and at the same time coupling this absorption to efficient energy dissipation pathways (ultrafast internal conversion of the complexed form and fast energy transfer from the excited co-pigment to the anthocyanin followed by adiabatic proton transfer) that avoid net photochemical damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosensitizers (PS) photodynamic activities are regulated by their location in the biological target, which modulates their photophysical and photochemical features. In this work the PS partition for the Xanthene Dyes Fluorescein (FSC), Eosin Y(EOS), Erythrosin B (ERY) and Rose Bengal B (RBB) in biomimetic models (SDS, CTAB and Pluronic P-123 micelles) and the effects on their photophysical characteristics are evaluated. The hydrophobic and electrostatic forces that govern the PS-micelle interaction are analyzed. At physiological pH (7.25), the ability of the dianionic protolytic form of the dyes to be positioned into the micelle palisade and its micelle interaction depends not only on the hydrophobicity of the dye but also on the micellar surface charge. The Binding Constants obey exactly the same order of the Partition Coefficients for the dyes in P-123 and CTAB micelles. The Stern-Volmer treatment pointed out that dyes are located inside the micelle, especially ERY and RBB. The magnitude of the dye-micelle interaction increased from SDS, P-123 and finally CTAB micelles due to the charges between dye and micelle, and among the xanthenes, their hydrophobic characteristics. Within the micelle pseudo phase, ERY and RBB are still very efficient photosensitizers exhibiting high quantum yield of singlet oxygen, which turns them very attractive especially with P-123 polymeric system as drug delivery systems in photodynamic therapy. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photochemical cis-trans isomerization of the 4-{4-[2-(pyridin-4-yl)ethenyl]phenyl}-2,2': 6',2''-terpyridine ligand (vpytpy) was investigated by UV-vis, NMR and TWIM-MS. Ion mobility mass spectrometry was performed pursuing the quantification of the isomeric composition during photolysis, however an in-source trans-to-cis isomerization process was observed. In order to overcome this inherent phenomenon, the isomerization of the vpytpy species was suppressed by complexation, reacting with iron(II) ions, and forming the [Fe(vpytpy)(2)](2+) complex. The strategy of "freezing" the cis-trans isomerizable ligand at a given geometric conformation was effective, preventing further isomerization, thus allowing the distinction of each one of the isomers in the photolysed mixture. In addition, the experimental drift times were related to the calculated surface areas of the three possible cis-cis, cis-trans and trans-trans iron(II) complex isomers. The stabilization of the ligand in a given conformation also allows us to obtain the cis-cis and cis-trans complexes exhibiting the ligand in the metastable cis-conformation, as well as in the thermodynamically stable trans-conformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The topographical character of conical intersections (CIs)-either sloped or peaked-has played a fundamental and important role in the discussion of the efficiency of CIs as photochemical "funnels." Here this perspective is employed in connection with a recent study of a model protonated Schiff base (PSB) cis to trans photoisomerization in solution [Malhado et al., J. Phys. Chem. A 115, 3720 (2011)]. In that study, the calculated reduced photochemical quantum yield for the successful production of trans product versus cis reactant in acetonitrile solvent compared to water was interpreted in terms of a dynamical solvent effect related to the dominance, for the acetonitrile case, of S-1 to S-0 nonadiabatic transitions prior to the reaching the seam of CIs. The solvent influence on the quantum yield is here re-examined in the sloped/peaked CI topographical perspective via conversion of the model's two PSB internal coordinates and a nonequilibrium solvent coordinate into an effective branching space description, which is then used to re-analyze the generalized Langevin equation/surface hopping results. The present study supports the original interpretation and enriches it in terms of topographical detail. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754505]