20 resultados para Photo-sensors
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This work shows the luminescence properties of a rare-earth organic complex, the Tb(ACAC)(3)phen. The results show the (5)D(4)->(7)F(3,4,5,6) transitions with no influence of the ligand. The photoluminescence excitation spectrum is tentatively interpreted by the ligands absorption. An organic light emitting diode (CLED) was made by thermal evaporation using TPD (N,N`-bis(3-methylphenyl)N,N`-diphenylbenzidine) and Alq3 (aluminum-tris(8-hydroxyquinoline)) as hole and electron transport layers, respectively. The emission reproduces the photoluminescence spectrum of the terbium complex at room temperature, with Commission Internationale de l`Eclairage - CIE (x,y) color coordinates of (0.28,0.55). No presence of any bands from the ligands was observed. The potential use of this compound in efficient devices is discussed. (C) 2008 Elsevier B.V. All rights reserved.
Photo-induced toxicity of anthracene in the Antarctic shallow water amphipod, Gondogeneia antarctica
Resumo:
The photo-induced toxicity of anthracene was investigated as the mortality in Antarctic shallow water amphipod, Gondogeneia antarctica, at different concentrations of anthracene and different periods of exposure to natural sunlight and artificial UVA and UVB radiations. When exposed to natural sunlight, animals contaminated in the dark and placed in clean water or in anthracene solutions showed different degrees of mortality, dose-time dependent. Effects were even more evident when these animals were exposed to artificial UVA or UVB radiations. Depuration seemed to be a slow process. The effects of UV radiation and anthracene alone and the effects of the interactions of these two stressors implied that solar radiation is an important parameter that deserves consideration in the environmental assessment of polycyclic aromatic hydrocarbons in Antarctic coastal waters. G. antarctica proved to be a good bioindicator for the phototoxicity of anthracene in Antarctic shallow waters.
Resumo:
SHERMAN, D.J.; LI, B.; FERRELL E.J.; ELLIS, J.T.; COX, W.D.; MAIA, L.P., and SOUSA, P.H.G.O., 2011. Measuring Aeolian Saltation: A Comparison of Sensors. In: Roberts, T.M., Rosati, J.D., and Wang, P. (eds.), Proceedings, Symposium to Honor Dr. Nicholas C. Kraus, Journal of Coastal Research, Special Issue, No. 59, pp. 280-290. West Palm Beach (Florida), ISSN 0749-0208. We report the results of field experiments designed to compare four types of aeolian saltation sensors: the Safire; the Wenglor (R) Particle Counter; the Miniphone; and the Buzzer Disc. Sets of sensors were deployed in tight spatial arrays and sampled at rates as fast as 20 kHz. In two of the three trials, the data from the sensors are compared to data obtained from sand traps. The Miniphone and the Buzzer Disc, based on microphone and piezoelectric technologies, respectively, produced grain impact counts comparable to those derived from the trap data. The Satire and the Wenglor (R) Particle Counter produce count rates that were an order of magnitude too slow. Satires undercount because of their large momentum threshold and because its signal is saturated at relatively slow transport rates. We conclude that the Miniphone and the Buzzer Disc are appropriate for deployment as grain counters because their small size allows them to be installed in closely-spaced sets.
Resumo:
A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objective: This study aimed at evaluating the degree of conversion (DC) of four composite resins, being one nanofilled and 3 microhybrid resins, photo-activated with second- and third-generation light-emitting diodes (LEDs). Material and methods: Filtek (TM) Z350 nanofilled composite resins and Amelogen (R) Plus, Vit-l-escence (TM) and Opallis microhybrid resins were photo-activated with two second-generation LEDs (Radii-cal and Elipar Free Light (TM) 2) and one third-generation LED (Ultra-Lume LED 5) by continuous light mode, and a quartz halogen-tungsten bulb (QHT, control). After 24 h of storage, the samples were pulverized into fine powder and 5 mg of each material were mixed with 100 mg of potassium bromide (KBr). After homogenization, they were pressed, which resulted in a pellet that was evaluated using an infrared spectromer (Nexus 470, Thermo Nicolet) equipped with TGS detector using diffuse reflectance (32 scans, resolution of 4 cm(-1)) coupled to a computer. The percentage of unreacted carbon-carbon double bonds (% C=C) was determined from the ratio of absorbance intensities of aliphatic C=C (peak at 1637 cm-1) against internal standard before and after curing of the specimen: aromatic C-C (peak at 1610 cm-1). Results: The ANOVA showed a significant effect on the interaction between the light-curing units (LCUs) and the composite resins (p<0.001). The Tukey's test showed that the nanofilled resin (Filtek (TM) Z350) and Opallis when photo-activated by the halogen lamp (QTH) had the lowest DC compared with the other microhybrid composite resins. The DC of the nanofilled resin (Filtek (TM) Z350) was also lower using LEDs. The highest degrees of conversion were obtained using the third-generation LED and one of second-generation LEDs (Elipar Free Light (TM) 2). Conclusions: The nanofilled resin showed the lowest DC, and the Vit-l-escence (TM) microhybrid composite resin showed the highest DC. Among the LCUs, it was not possible to establish an order, even though the second-generation LED Radii-cal provided the lowest DC.
Resumo:
The use of nanoscale low-dimensional systems could boost the sensitivity of gas sensors. In this work we simulate a nanoscopic sensor based on carbon nanotubes with a large number of binding sites using ab initio density functional electronic structure calculations coupled to the Non-Equilibrium Green's Function formalism. We present a recipe where the adsorption process is studied followed by conductance calculations of a single defect system and of more realistic disordered system considering different coverages of molecules as one would expect experimentally. We found that the sensitivity of the disordered system is enhanced by a factor of 5 when compared to the single defect one. Finally, our results from the atomistic electronic transport are used as input to a simple model that connects them to experimental parameters such as temperature and partial gas pressure, providing a procedure for simulating a realistic nanoscopic gas sensor. Using this methodology we show that nitrogen-rich carbon nanotubes could work at room temperature with extremely high sensitivity. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4739280]
Resumo:
Dispersion of photoluminescent rare earth metal complexes in polymer matrices is of great interest due to the possibility of avoiding the saturation of the photoluminescent signal. The possibility of using a natural ionic conducting polymer matrix was investigated in this study. Samples of agar-based electrolytes containing europium picrate were prepared and characterized by physical and chemical analyses. The FTIR spectra indicated strong interaction of agar O-H and 3.6-anhydro-galactose C-O groups with glycerol and europium picrate. The DSC analyses revealed no glass transition temperature of the samples in the -60 to 250 degrees C range. From the thermogravimetry (TG), a thermal stability of the samples of up to 180 degrees C was stated. The membranes were subjected to ionic conductivity measurement, which provided the values of 2.6 x 10(-6) S/cm for the samples with acetic acid and 1.6 x 10(-5) S/cm for the samples without acetic acid. Moreover, the temperature-dependent ionic conductivity measurements revealed both Arrhenius and VTF models of the conductivity depending on the sample. Surface visualization through scanning electron microscopy (SEM) demonstrated good uniformity. The samples were also applied in small electrochromic devices and showed good electrochemical stability. The present work confirmed that these materials may perform as satisfactory multifunctional component layers in the field of electrochemical devices. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.
Resumo:
The aim of this study was to characterize and compare the spectral behavior of different soil classes obtained by orbital and terrestrial sensors. For this, an area of 184 ha in Rafard (SP) Brazil was staked on a regular grid of 100x100 m and soil samples were collected and georeferenced. After that, soil spectral curves were obtained with IRIS sensor and the sample points were overlaid at Landsat and ASTER images for spectral data collection. The soil samples were classified and mean soil curves for all sensors were generated by soil classes. The soil classes were differentiated by texture, organic matter and total iron for all sensors studied, the orbital sensors despite the lower spectral resolution, maintained the characteristics of the soil and the curves of reflectance intensity.
Resumo:
Piezoresistive sensors are commonly made of a piezoresistive membrane attached to a flexible substrate, a plate. They have been widely studied and used in several applications. It has been found that the size, position and geometry of the piezoresistive membrane may affect the performance of the sensors. Based on this remark, in this work, a topology optimization methodology for the design of piezoresistive plate-based sensors, for which both the piezoresistive membrane and the flexible substrate disposition can be optimized, is evaluated. Perfect coupling conditions between the substrate and the membrane based on the `layerwise' theory for laminated plates, and a material model for the piezoresistive membrane based on the solid isotropic material with penalization model, are employed. The design goal is to obtain the configuration of material that maximizes the sensor sensitivity to external loading, as well as the stiffness of the sensor to particular loads, which depend on the case (application) studied. The proposed approach is evaluated by studying two distinct examples: the optimization of an atomic force microscope probe and a pressure sensor. The results suggest that the performance of the sensors can be improved by using the proposed approach.
Resumo:
Polymeric sensors with improved resistance to organic solvents were produced via the layer-by-layer thin film deposition followed by chemical cross-linking. According to UV-vis spectroscopy, the mass loss of polyaniline/poly(vinyl alcohol) and polyaniline/novolac-type resin based films deposited onto glass slides was less than 20% when they were submitted to successive immersions (up to 3,000 immersion cycles) into commercially available ethanol and gasoline fuel samples. Polyallylamine hydrochloride/nickel tetrasulfonated phthalocyanine films presented similar stability. The electrical responses assessed by impedance spectroscopy of films deposited onto Au-interdigitated microelectrodes were relatively unaffected after continuous or cyclic immersions into both fuels. After these studies, an array including these polymeric sensors was employed to detect adulteration in ethanol and gasoline samples. After principal component analysis, it was possible to conclude that the proposed sensor array is capable to discriminate with remarkable reproducibility ethanol samples containing different amounts of water or else gasoline samples containing different amounts of ethanol. In both examples, more than 90% of data variance was retained in the first principal component. For each type of sample, ethanol and gasoline, it was found a linear correlation between one of the principal components and the sample's composition. These findings allow one to conclude that these films present great potential for the development of reliable and low-cost sensors for fuel analysis in liquid phase.
Resumo:
Radiation dose assessment is essential for several medical treatments and diagnostic procedures. In this context, nanotechnology has been used in the development of improved radiation sensors, with higher sensitivity as well as smaller sizes and energy dependence. This paper deals with the synthesis and characterization of gold/alanine nanocomposites with varying mass percentage of gold, for application as radiation sensors. Alanine is an excellent stabilizing agent for gold nanoparticles because the size of the nanoparticles does not augment with increasing mass percentage of gold, as evidenced by UV-vis spectroscopy, dynamic light scattering, and transmission electron microscopy. X-ray diffraction patterns suggest that the alanine crystalline orientation undergoes alterations upon the addition of gold nanoparticles. Fourier transform infrared spectroscopy indicates that there is interaction between the gold nanoparticles and the amine group of the alanine molecules, which may be the reason for the enhanced stability of the nanocomposite. The application of the nanocomposites as radiation detectors was evaluated by the electron spin resonance technique. The sensitivity is improved almost 3 times in the case of the nanocomposite containing 3% (w/w) gold, so it can be easily tuned by changing the amount of gold nanoparticles in the nanocomposites, without the size of the nanoparticles influencing the radiation absorption. In conclusion, the featured properties, such as homogeneity, nanoparticle size stability, and enhanced sensitivity, make these nanocomposites potential candidates for the construction of small-sized radiation sensors with tunable sensitivity for application in several medical procedures.
Resumo:
Several studies on polythiophene gas sensors, based mainly on electrochemical and gravimetric principles can be found in the literature. However, other principles of gas detection, such as optical and thermal, are still little studied. Optical sensing is suitable for remote detection and offers great versatility at low cost. Here,we report on the use of thin films of seven polythiophene derivatives as active layer in optical sensors for the detection of six volatile organic compounds (n-hexane, toluene, tetrahydrofuran, chloroform, dichloromethane and methanol) and water vapor, in concentration range of 500-30,000 ppm. The results showed that it is possible to use different polythiophene derivatives to differentiate VOCs by optical sensing. Differentiation can be performed based on the presence or not of response to an analyte and the sensitivity value of the sensors for the analytes. Another important feature is the lack of the effect of humidity on the response of most films, which could be a major drawback in the application of these sensors. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.
Resumo:
Solar reactors can be attractive in photodegradation processes due to lower electrical energy demand. The performance of a solar reactor for two flow configurations, i.e., plug flow and mixed flow, is compared based on experimental results with a pilot-scale solar reactor. Aqueous solutions of phenol were used as a model for industrial wastewater containing organic contaminants. Batch experiments were carried out under clear sky, resulting in removal rates in the range of 96100?%. The dissolved organic carbon removal rate was simulated by an empirical model based on neural networks, which was adjusted to the experimental data, resulting in a correlation coefficient of 0.9856. This approach enabled to estimate effects of process variables which could not be evaluated from the experiments. Simulations with different reactor configurations indicated relevant aspects for the design of solar reactors.