2 resultados para Phase noise

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been revealed that the network of excitable neurons via attractive coupling can generate spikes under stimuli of subthreshold signals with disordered phases. In this paper, we explore the firing activity induced by phase disorder in excitable neuronal networks consisting of both attractive and repulsive coupling. By increasing the fraction of repulsive coupling, we find that, in the weak coupling strength case, the firing threshold of phase disorder is increased and the system response to subthreshold signals is decreased, indicating that the effect of inducing neuron firing by phase disorder is weakened with repulsive coupling. Interestingly, in the large coupling strength case, we see an opposite situation, where the coupled neurons show a rather large response to the subthreshold signals even with small phase disorder. The latter case implies that the effect of phase disorder is enhanced by repulsive coupling. A system of two-coupled excitable neurons is used to explain the role of repulsive coupling on phase-disorder-induced firing activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we study the signal amplification of coupled active rotators with phase-shifted coupling. We find that the system's response to the external subthreshold signal can be significantly affected by each of the two types of phase-shifted couplings: identical and non-identical phase-shifted couplings. Moreover, through both theoretical analysis and numerical simulations, we have figured out the optimal phase shift, at which the largest signal amplification is generated. These results show that the phase-shifted coupling plays an important role in regulating the system's response to the subthreshold signal.