10 resultados para Pest insects

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have characterized in vitro and in vivo effects of trypsin inhibitors from Theobroma seeds on the activity of trypsin- and chymotrypsin-like proteins from Lepidopteran pest insects. The action of semipurified trypsin inhibitors from Theobroma was evaluated by the inhibition of bovine trypsin and chymotrypsin activities determined by the hydrolysis of N-Benzoyl-DL-Arginine-p-Nitroanilide (BAPA) and N-Succinyl-Ala-Ala-Pho-Phe p-Nitroanilide (S-(Ala)2ProPhe-pNA). Proteinase inhibitor activities from Theobroma cacao and T. obovatum seeds were the most effective in inhibiting trypsin-like proteins, whereas those from T. obovatum and T. sylvestre were the most efficient against chymotrypsin-like proteins. All larvae midgut extracts showed trypsin-like proteolytic activities, and the putative trypsin inhibitors from Theobroma seeds significantly inhibited purified bovine trypsin. With respect to the influence of Theobroma trypsin inhibitors on intact insects, the inclusion of T. cacao extracts in artificial diets of velvet bean caterpillars (Anticarsia gemmatalis) and sugarcane borer (Diatraea saccharalis) produced a significant increase in the percentage of adult deformation, which is directly related to both the survival rate of the insects and oviposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dispersal of plant-feeding mites can occur involuntarily, through transportation of infested plant parts, or voluntarily, by walking to new plant parts or to suitable spots where biotic (phoresis) or abiotic (wind, agricultural tools, etc.) factors carry them over long distances. Elucidating the dispersal mechanisms of the coconut mite, Aceria guerreronis Keifer, is important for understanding the process of colonization of new fruits of a same or different plants, essential for the improvement of control strategies of this serious coconut pest. Thus, the objective of this work was to investigate the voluntary dispersal mechanisms of this mite. The hypothesis that the coconut mite disperses by walking, phoresis or wind were tested. The coconut mite was shown to be able to walk short distances between fruits of the same bunch or between bunches of the same plant. Phoresis on insects of the orders Hymenoptera (Apidae), Coleoptera (Curculionidae) and Lepidoptera (Phycitidae) was evaluated in the laboratory and in the field. Although in the laboratory mites were shown to be able to climb onto honeybees, field investigations failed to show these insects as important carriers of the pest, corroborating findings of previous works; however, both laboratory and field investigations suggested the curculionid Parisoschoenus obesulus Casey to be able to transport the coconut mite between plants. Similarly, laboratory and field investigations suggested wind to be important in the dispersal of the coconut mite between plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The larval endoparasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae) has a toolbox of biological weapons to secure for host colonization and the successful parasitization of its host Heliothis virescens (F.) (Lepidoptera: Noctuidae). The cDNA of a putative chitinase has been previously isolated and initially characterized from teratocytes of this parasitoid among the plethora of molecules available in the venom and calyx fluids injected by females, oral and/or anal secretions released by the parasitoid larvae and/or produced by the expression of genes of the symbiotic associated polydnavirus. This putative chitinase has been initially associated with the host cuticle digestion to allow for parasitoid egression and with the asepsis of the host environment, acting as an antimicrobial. As chitinases are commonly expressed in plants against plant pathogens, the chitinase derived from the teratocytes of T. nigriceps is a potential tool for the development of insect pest control methods based on the disruption of the perithrophic membrane of herbivores. Therefore, we aimed to characterize the activity of the putative chitinase from teratocytes of T. nigriceps (Tnchi) produced using the Escherichia coli expression system and its potential to control H. virescens larvae when expressed into transgenic tobacco plants. The purified E. coli-produced Tnchi protein showed no chitinolitic activity, but was active in binding with colloidal and crystalline chitins in water and with colloidal chitin in buffered solution (pH = 6.74). Transgenic tobacco plants showed no enhanced chitinolitic activity relative to control plants, but survival of three-day old larvae of H. virescens was severely affected when directly fed on transgenic tobacco leaves expressing the recombinant Tnchi protein. Some properties of the Tnchi protein and the potential use of Tnchi-transgenic plants to control plant pests are discussed. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light pollution due to exterior lighting is a rising concern. While glare, light trespass and general light pollution have been well described, there are few reported studies on the impact of light pollution on insects. By studying insect behavior in relation to artificial lighting, we suggest that control of the UV component of artificial lighting can significantly reduce its attractiveness, offering a strong ability to control the impact on insects. Traditionally, the attractiveness of a lamp to insects is calculated using the luminous efficiency spectrum of insect rhodopsin. This has enabled the development of lamps that emit radiation with wavelengths that are less visible to insects (that is, yellow lamps). We tested the assumption that the degree of visibility of a lamp to insects can predict its attractiveness by means of experimental collections. We found that the expected lamp's visibility is indeed related to the extent to which it attracts insects. However, the number of insects attracted to a lamp is disproportionally affected by the emission of ultraviolet radiation. UV triggers the behavior of approaching lights more or less independently of the amount of UV radiation emitted. Thus, even small amounts of UV should be controlled in order to develop bug-free lamps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coconut mite, Aceria guerreronis Keifer, is one of the main pests of coconut palms (Cocos nucifera) in northeastern Brazil. The objective of this study was to evaluate the levels of the coconut mite and other mites on coconut palms in the state of So Paulo and to estimate the possible role of predatory mites in the control of this pest. The effect of cultivated genotypes and sampling dates on the mite populations was also estimated. We sampled attached fruits, leaflets, inflorescences, and fallen fruits. The coconut mite was the main phytophagous mite found on attached and fallen fruits, with average densities of 110.0 and 20.5 mites per fruit, respectively. The prevalent predatory mites on attached and fallen fruits were Proctolaelaps bulbosus Moraes, Reis & Gondim Jr. and Proctolaelaps bickleyi (Bram), both Melicharidae. On leaflets, the tenuipalpids Brevipalpus phoenicis (Geijsks) and Tenuipalpus coyacus De Leon and the tetranychid Oligonychus modestus (Banks) were the predominant phytophagous mites. On both leaflets and inflorescences, the predominant predatory mites belonged to the Phytoseiidae. Neoseiulus baraki (Athias-Henriot) and Neoseiulus paspalivorus (De Leon), predators widely associated with the coconut mite in northeastern Brazil and several other countries, were not found. The low densities of the coconut mite in So Paulo could be related to prevailing climatic conditions, scarcity of coconut plantations (hampering the dispersion of the coconut mite between fields), and to the fact that some of the genotypes cultivated in the region are unfavorable for its development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant extracts represent a great source of molecules, with insecticidal activity, which are used for pest control in several crop production systems. This work aimed to evaluate the toxicity of an aqueous extract of leaves of castor bean against larvae of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in search for different classes of molecules with insecticidal activities by using in vitro assays. The effects of the castor bean leaf extract on the food utilization, development, and survival of S. frugiperda larvae was evaluated by feeding the larvae an artificial diet supplemented with different concentrations of the extract (0%, 1%, 2.5%, 5%, and 10% w/v). The effects observed were dose-dependent, and the highest concentration evaluated (10% w/v) was the one the most affected food utilization by altering the nutritional indices, as well as larval weight gain, development time, and survivorship. In vitro assays to detect saponins, lectins, and trypsin inhibitors in the castor bean leaf extract were performed, but only trypsin inhibitors were detected. No preference for the diet source was detected in S. frugiperda by feeding the larvae in choice experiments with diets containing different concentrations of the castor bean extract tested. The data obtained indicate the existence of a potential molecule in the tested extract of castor bean to be used as an alternative insecticide to be integrated in the management of S. frugiperda.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effects of crude extracts and fractions of Azadirachta indica, Melia azedarach, Toona ciliata and Trichilia pallida on both egg and nymph mortality and embryonic development of Bemisia tabaci B biotype, using tomato plants grown in a greenhouse. Next, we studied the host selection behavioral effects on the adult whitefly under laboratory conditions. The dichloromethane extracts from all plant species and fractions of the extract from branches of T. pallida (EBTPD) and of the extract from leaves of T. ciliata (ELTCD) in dichloromethane caused mortality of nymphs, but neither affected egg viability. However, the branches of the ethanolic extract of A. indica increased the period of embryonic development of the B. tabaci. In addition, the tomato leaflets treated with the fraction of ELTCD dichloromethane (0.28%) were the least preferred by adults, reducing the number of insects resting on the tomato leaflets. The ELTCD methanol and EBTPD dichloromethane fractions inhibited B. tabaci oviposition. Thus, Meliaceae derivatives can contribute to the reduction of the B. tabaci population. The susceptibility of the B. tabaci to Meliaceae derivatives and the relevant behavioral changes of this pest are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Occurrence of Zoophthora radicans infecting nymphs and adults of Thaumastocoris peregrinus Carpintero and Dellape, 2006 is reported in Brazil. This is a new record of host for this fungal species and the first fungal pathogen associated with this pest worldwide. Infection of Z. radicans on T. peregrinus populations on commercial Eucalyptus plantation (Eucalyptus spp.) reached up to 100%, and low insect densities were associated with high levels of fungal infection in three out of seven plots. This pathogen seems to be virulent against T. peregrinus and may play an important role in population regulations of this invasive pest through naturally induced epizootics. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since it was first reported in Brazil in the 1990s, the B biotype of silverleaf whitefly (Bemisia tabaci [Genn.], Hemiptera: Aleyrodidae) has been recognized as an important pest in soybeans (Glycine max L.), reducing the productivity of this legume species in some areas of the country. As an alternative to chemical control, the use of resistant genotypes represents an important tool for integrated pest management (IPM). This study evaluated the performance of 10 soybean genotypes prior to whitefly infestation, by testing attractiveness and preference for oviposition in the greenhouse and antibiosis in the laboratory. In a multiple-choice test, 'IAC-17' was the least attractive to insects. In a no-choice test, 'IAC-17' was the least attractive for, egg deposition, indicating the occurrence of non-preference for oviposition on this genotype. Trichome density was positively correlated with the oviposition site and may be associated with the resistance of 'IAC-17' to infestation. The genotypes 'IAC-PL1', 'IAC-19', 'Conquista', 'IAC-24' and 'IAC-17' extended the insect's life cycle, indicating the occurrence of a small degree of antibiosis and/or non-preference for feeding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background In the tephritids Ceratitis, Bactrocera and Anastrepha, the gene transformer provides the memory device for sex determination via its auto-regulation; only in females is functional Tra protein produced. To date, the isolation and characterisation of the gene transformer-2 in the tephritids has only been undertaken in Ceratitis, and it has been shown that its function is required for the female-specific splicing of doublesex and transformer pre-mRNA. It therefore participates in transformer auto-regulatory function. In this work, the characterisation of this gene in eleven tephritid species belonging to the less extensively analysed genus Anastrepha was undertaken in order to throw light on the evolution of transformer-2. Results The gene transformer-2 produces a protein of 249 amino acids in both sexes, which shows the features of the SR protein family. No significant partially spliced mRNA isoform specific to the male germ line was detected, unlike in Drosophila. It is transcribed in both sexes during development and in adult life, in both the soma and germ line. The injection of Anastrepha transformer-2 dsRNA into Anastrepha embryos caused a change in the splicing pattern of the endogenous transformer and doublesex pre-mRNA of XX females from the female to the male mode. Consequently, these XX females were transformed into pseudomales. The comparison of the eleven Anastrepha Transformer-2 proteins among themselves, and with the Transformer-2 proteins of other insects, suggests the existence of negative selection acting at the protein level to maintain Transformer-2 structural features. Conclusions These results indicate that transformer-2 is required for sex determination in Anastrepha through its participation in the female-specific splicing of transformer and doublesex pre-mRNAs. It is therefore needed for the auto-regulation of the gene transformer. Thus, the transformer/transfomer-2 > doublesex elements at the bottom of the cascade, and their relationships, probably represent the ancestral state (which still exists in the Tephritidae, Calliphoridae and Muscidae lineages) of the extant cascade found in the Drosophilidae lineage (in which tra is just another component of the sex determination gene cascade regulated by Sex-lethal). In the phylogenetic lineage that gave rise to the drosophilids, evolution co-opted for Sex-lethal, modified it, and converted it into the key gene controlling sex determination.