2 resultados para Permo-carbonífero
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A detailed magnetostratigraphic and rock-magnetism study of two Late Palaeozoic rhythmite exposures (Itu and Rio do Sul) from the Itarare Group (Parana Basin, Brazil) is presented in this paper. After stepwise alterning-field procedures and thermal cleaning were performed, samples from both collections show reversed characteristic magnetization components, which is expected for Late Palaeozoic rocks. However, the Itu rocks presented an odd, flat inclination pattern that could not be corrected with mathematical methods based on the virtual geomagnetic pole (VGP) distributions. Correlation tests between the maximum anisotropy of the magnetic susceptibility axis (K1) and the magnetic declination indicated a possible mechanical influence on the remanence acquisition. The Rio do Sul sequence displayed medium to high inclinations and provided a high-quality palaeomagnetic pole (after shallowing corrections of f = 0.8) of 347.5 degrees E 63.2 degrees S (N = 119; A95 = 3.3; K = 31), which is in accordance with the Palaeozoic apparent wander pole path of South America. The angular dispersion (Sb) for the distribution of the VGPs calculated on the basis of both the 45 degrees cut-off angle and Vandamme method was compared to the best-fit Model G for mid-latitudes. Both of the Sb results are in reasonable agreement with the predicted (palaeo) latitudinal S-? relationship during the Cretaceous Normal Superchron (CNS), although the Sb value after the Vandamme cut-off has been applied is a little lower than expected. This result, in addition to those for low palaeolatitudes during the Permo-Carboniferous Reversed Superchron (PCRS) previously reported, indicates that the low secular variation regime for the geodynamo that has already been discovered in the CNS might have also been predominant during the PCRS.
Resumo:
Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate and precise radiogenic isotope age determination, hampering the assessment of the effects of an individual event in the geological record. We demonstrate the utility of a multi-chronometer approach in our study of samples from the 40 km diameter Araguainha impact structure of central Brazil. Samples of uplifted basement granite display abundant evidence of shock deformation, but U/Pb ages of shocked zircons and the Ar-40/Ar-39 ages of feldspar from the granite largely preserve the igneous crystallization and cooling history. Mixed results are obtained from in situ Ar-40/Ar-39 spot analyses of shocked igneous biotites in the granite, with deformation along kink-bands resulting in highly localized, partial resetting in these grains. Likewise, spot analyses of perlitic glass from pseudotachylitic breccia samples reflect a combination of argon inheritance from wall rock material, the age of the glass itself, and post-impact devitrification. The timing of crater formation is better assessed using samples of impact-generated melt rock where isotopic resetting is associated with textural evidence of melting and in situ crystallization. Granular aggregates of neocrystallized zircon form a cluster of ten U-Pb ages that yield a "Concordia" age of 247.8 +/- 3.8 Ma. The possibility of Pb loss from this population suggests that this is a minimum age for the impact event. The best evidence for the age of the impact comes from the U-Th-Pb dating of neocrystallized monazite and Ar-40/Ar-39 step heating of three separate populations of post-impact, inclusion-rich quartz grains that are derived from the infill of miarolitic cavities. The Pb-206/U-238 age of 254.5 +/- 3.2 Ma (2 sigma error) and Pb-208/Th-232 age of 255.2 +/- 4.8 Ma (2 sigma error) of monazite, together with the inverse, 18 point isochron age of 254 +/- 10 Ma (MSWD = 0.52) for the inclusion-rich quartz grains yield a weighted mean age of 254.7 +/- 2.5 Ma (0.99%, 2 sigma error) for the impact event. The age of the Araguainha crater overlaps with the timing of the Permo-Triassic boundary, within error, but the calculated energy released by the Araguainha impact is insufficient to be a direct cause of the global mass extinction. However, the regional effects of the Araguainha impact event in the Parana-Karoo Basin may have been substantial. (C) 2012 Elsevier Ltd. All rights reserved.