3 resultados para Peakmoor sandstone
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This article presents TDEM results from an area with recent induced shallow seismicity. The purpose was to do a geoelectrical mapping of sedimentary and fractured basaltic aquifers for better understanding of the hydrogeologic setting. The study area is in the Parana basin where flood basalts are overlain by sedimentary units near the city of Bebedouro, northern Sao Paulo State, Brazil. 86 TDEM soundings were acquired in an area of 90 km(2) in the Andes and Botafogo study areas. The soundings were chosen next to wells for calibration, and also along profiles crossing the seismically active areas. 1-D interpretation results showed the general geoelectrical stratigraphy of this part of the Parana basin. The upper geoelectrical layer is the shallow sedimentary aquifer (Adamantina formation) with less than 80 m thickness. The second geoelectrical layer contains the upper basalts of the Serra Geral formation at about 60-80 m depths. A saturated fractured basalt zone between 100 and 300 m depths was identifiable on various TDEM soundings. This depth range corresponds to the range of hypocentral depths for more than 3000 micro-earthquakes in this area. The lower basalt layer was estimated to lie between 400 and 650 m depth. The deepest geoelectrical layer detected by various TDEM soundings corresponds to the Botucatu sandstone (Guarani aquifer). Results suggest that the high-discharge wells are located in the fractured zone in the middle basalt of the Serra Geral formation. There is a good correlation between seismically active areas, high discharge wells (>190 m(3)/h), and fracture zones in the middle basalt. The results reinforce the hypothesis that the shallow seismic activity in the Bebedouro region is being triggered by high rates of groundwater withdrawal. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The removal of Pb2+ from aqueous solution by two Brazilian rocks that contain zeolites-amygdaloidal dacite (ZD) and sandstone (ZS)-was examined by batch experiments. ZD contains mordenite and ZS, stilbite. The effects of contact time, concentration of metal in solution and capacity of Na+ to recover the adsorbed metals were evaluated at room temperature (20A degrees C). The sorption equilibrium was reached in the 30 min of agitation time. Both materials removed 100% of Pb2+ from solutions at concentrations up to 50 mg/L, and at concentrations larger than 100 mg/L of Pb2+, the adsorption capacity of sandstone was more efficient than that of amygdaloidal dacite due to the larger quantities and the type of zeolites (stilbite) in the cement of this rock. All adsorbed Pb2+ was easily replaced by Na+ in both samples. The analysis of the adsorption models using nonlinear regression revealed that the Sips and the Freundlich isotherms provided the best fit for the ZS and ZD experimental data, respectively, indicating the heterogeneous adsorption surfaces of these zeolites.
Resumo:
Final Gondwana amalgamation was marked by the closure of the Neoproterozoic Clymene ocean between the Amazonia craton and central Gondwana. The events which occurred in the last stage of this closure were recorded in the upper Alto Paraguai Group in the foreland of the Paraguay orogen. Outcrop-based fades analysis of the siliciclastic rocks of upper Alto Paraguai Group, composed of the Sepotuba and Diamantino Formations, was carried out in the Diamantino region, within the eastern part of the Barra dos Bugres basin, Mato Grosso state, central-western Brazil. The Sepotuba Formation is composed of sandy shales with planar to wave lamination interbedded with fine-grained sandstone with climbing ripple cross-lamination, planar lamination, swaley cross-stratification and tangential to sigmoidal cross-bedding with mud drapes, related to marine offshore deposits. The lower Diamantino Formation is composed of a monotonous, laterally continuous for hundreds of metres, interbedded siltstone and fine-grained sandstone succession with regular parallel lamination, climbing ripple cross-lamination and ripple-bedding interpreted as distal turbidites. The upper part of this formation consists of fine to medium-grained sandstones with sigmoidal cross-bedding, planar lamination, climbing ripple cross-lamination, symmetrical to asymmetrical and linguoid ripple marks arranged in lobate sand bodies. These fades are interbedded with thick siltstone in coarsening upward large-scale cycles related to a delta system. The Sepotuba Formation characterises the last transgressive deposits of the Paraguay basin representing the final stage of a marine incursion of the Clymene ocean. The progression of orogenesis in the hinterland resulted in the confinement of the Sepotuba sea as a foredeep sub-basin against the edge of the Amazon craton. Turbidites were generated during the deepening of the basin. The successive filling of the basin was associated with progradation of deltaic lobes from the southeast, in a wide lake or a restricted sea that formed after 541 +/- 7 Ma. Southeastern to east dominant Neoproterozoic source regions were confirmed by zircon grains that yielded ages around 600 to 540 Ma, that are interpreted to be from granites in the Paraguay orogen. This overall regressive succession recorded in the Alto Paraguai Group represents the filling up of a foredeep basin after the final amalgamation of westem Gondwana in the earliest Phanerozoic. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.