27 resultados para Pathways and genes expression in GVHD
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic beta cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.
Resumo:
OBJECTIVE: We sought to investigate the effects of antenatal retinoic acid on the pulmonary vasculature and vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFR) expression in a nitrofen-induced congenital diaphragmatic hernia (CDH) model. STUDY DESIGN: Rat fetuses were exposed to nitrofen at gestational day 9.5 and/or all-trans retinoic acid (ATRA) at gestational days 18.5-20.5. We assessed lung growth, airway, and vascular morphometry. VEGF, VEGFR1, and VEGFR2 expression was analyzed by Western blotting and immunohistochemistry. Continuous data were analyzed by analysis of variance and Kruskal-Wallis test. RESULTS: CDH decreased lung to body weight ratio, increased mean linear intercept and mean transection length/airspace, and decreased mean airspace cord length. ATRA did not affect lung growth or morphometry. CDH increased proportional medial wall thickness of arterioles while ATRA reduced it. ATRA recovered expression of VEGF and receptors, which were reduced in CDH. CONCLUSION: Retinoic acid and VEGF may provide pathways for preventing pulmonary hypertension in CDH.
Characterization of PAR1 and FGFR1 expression in invasive breast carcinomas: Prognostic significance
Resumo:
Breast cancer is the most common cause of cancer mortality among women worldwide. Among the several factors associated with breast cancer development, angiogenesis plays an essential role and has currently emerged as a potential diagnostic, prognostic and therapeutic target. Protease-activated receptor 1 (PAR1) and fibroblast growth factor receptor 1 (FGFR1) have important activities in tumor angiogenesis and progression. The aim of this study was to investigate the prognostic significance of these two receptors, hypothesising significant correlations between receptor expression in tumor angiogenesis and clinicopathological parameters customarily used in breast cancer prognosis and prediction. Formalin-fixed and paraffin-embedded samples of ductal invasive breast carcinomas were used to analyze the expression of PAR1 and FGFR1, in the tumor cells as well as in the tumor stroma, and further determine intratumoral microvessel density (iMVD) to quantify intratumoral angiogenesis. Correlations between PAR1 and FGFR1 expression in tumor cells and stroma, iMVD and several clinicopathological parameters and molecular markers used in breast cancer diagnosis have been addressed. The correlation between PAR1 and FGFR1 suggests an association of the two receptors with a more aggressive breast cancer phenotype and, consequently, a potential role during tumor progression. The results reported in the present study also emphasize the importance of microenvironmental factors in tumor progression, while precluding the positive association between iMVD and breast cancer aggressiveness.
Resumo:
Abstract Background Clinical and experimental data suggest that the inflammatory response is impaired in diabetics and can be modulated by insulin. The present study was undertaken to investigate the role of insulin on the early phase of allergic airway inflammation. Methods Diabetic male Wistar rats (alloxan, 42 mg/Kg, i.v., 10 days) and controls were sensitized by s.c. injection of ovalbumin (OA) in aluminium hydroxide 14 days before OA (1 mg/0.4 mL) or saline intratracheal challenge. The following analyses were performed 6 hours thereafter: a) quantification of interleukin (IL)-1β, tumor necrosis factor (TNF)-α and cytokine-induced neutrophil chemoattractant (CINC)-1 in the bronchoalveolar lavage fluid (BALF) by Enzyme-Linked Immunosorbent Assay, b) expression of E- and P- selectins on lung vessels by immunohistochemistry, and c) inflammatory cell infiltration into the airways and lung parenchyma. NPH insulin (4 IU, s.c.) was given i.v. 2 hours before antigen challenge. Results Diabetic rats exhibited significant reduction in the BALF concentrations of IL-1β (30%) and TNF-α (45%), and in the lung expression of P-selectin (30%) compared to non-diabetic animals. This was accompanied by reduced number of neutrophils into the airways and around bronchi and blood vessels. There were no differences in the CINC-1 levels in BALF, and E-selectin expression. Treatment of diabetic rats with NPH insulin, 2 hours before antigen challenge, restored the reduced levels of IL-1β, TNF-α and P-selectin, and neutrophil migration. Conclusion Data presented suggest that insulin modulates the production/release of TNF-α and IL-1β, the expression of P- and E-selectin, and the associated neutrophil migration into the lungs during the early phase of the allergic inflammatory reaction.
Resumo:
Background Airway inflammation in asthma involves innate immune responses. Toll-like receptors (TLRs) and thymic stromal lymphopoietin (TSLP) are thought to be involved in airway inflammation, but their expression in asthmatics both large and small airways has not been investigated. Objective To analyse the expression of TLR2, TLR3, TLR4 and TSLP in large and small airways of asthmatics and compare their expression in smoking and non-smoking asthmatics; to investigate whether TLR expression is associated with eosinophilic or neutrophilic airway inflammation and with Mycoplasma pneumoniae and Chlamydophila pneumoniae infection. Methods Using immunohistochemistry and image analysis, we investigated TLR2, TLR3, TLR4 and TSLP expression in large and small airways of 24 victims of fatal asthma, FA, (13 non-smokers, 11 smokers) and nine deceased control subjects (DCtrl). TLRs were also measured in 18 mild asthmatics (MA) and 12 healthy controls (HCtrl). M. pneumoniae and C. pneumoniae in autopsy lung tissue were analysed using real-time polymerase chain reaction. Airway eosinophils and neutrophils were measured in all subjects. Results Fatal asthma patients had higher TLR2 in the epithelial and outer layers of large and small airways compared with DCtrls. Smoking asthmatics had lower TLR2 levels in the inner and outer layers of the small airways than non-smoking asthmatics. TSLP was increased in the epithelial and outer layers of the large airways of FA. FA patients had greater TLR3 expression in the outer layer of large airways and greater TLR4 expression in the outer layer of small airways. Eosinophilic airway inflammation was associated with TLR expression in the epithelium of FA. No bacterial DNA was detected in FA or DCtrls. MA and HCtrls had only a small difference in TLR3 expression. Conclusions and Clinical Relevance Increased expression of TLR 2, 3 and 4 and TSLP in fatal asthma may contribute to the acute inflammation surrounding asthma deaths.
Resumo:
Abstract Background MYC deregulation is a common event in gastric carcinogenesis, usually as a consequence of gene amplification, chromosomal translocations, or posttranslational mechanisms. FBXW7 is a p53-controlled tumor-suppressor that plays a role in the regulation of cell cycle exit and reentry via MYC degradation. Methods We evaluated MYC, FBXW7, and TP53 copy number, mRNA levels, and protein expression in gastric cancer and paired non-neoplastic specimens from 33 patients and also in gastric adenocarcinoma cell lines. We also determined the invasion potential of the gastric cancer cell lines. Results MYC amplification was observed in 51.5% of gastric tumor samples. Deletion of one copy of FBXW7 and TP53 was observed in 45.5% and 21.2% of gastric tumors, respectively. MYC mRNA expression was significantly higher in tumors than in non-neoplastic samples. FBXW7 and TP53 mRNA expression was markedly lower in tumors than in paired non-neoplastic specimens. Moreover, deregulated MYC and FBXW7 mRNA expression was associated with the presence of lymph node metastasis and tumor stage III-IV. Additionally, MYC immunostaining was more frequently observed in intestinal-type than diffuse-type gastric cancers and was associated with MYC mRNA expression. In vitro studies showed that increased MYC and reduced FBXW7 expression is associated with a more invasive phenotype in gastric cancer cell lines. This result encouraged us to investigate the activity of the gelatinases MMP-2 and MMP-9 in both cell lines. Both gelatinases are synthesized predominantly by stromal cells rather than cancer cells, and it has been proposed that both contribute to cancer progression. We observed a significant increase in MMP-9 activity in ACP02 compared with ACP03 cells. These results confirmed that ACP02 cells have greater invasion capability than ACP03 cells. Conclusion In conclusion, FBXW7 and MYC mRNA may play a role in aggressive biologic behavior of gastric cancer cells and may be a useful indicator of poor prognosis. Furthermore, MYC is a candidate target for new therapies against gastric cancer.
Resumo:
BACKGROUND: MYC deregulation is a common event in gastric carcinogenesis, usually as a consequence of gene amplification, chromosomal translocations, or posttranslational mechanisms. FBXW7 is a p53-controlled tumor-suppressor that plays a role in the regulation of cell cycle exit and reentry via MYC degradation. METHODS: We evaluated MYC, FBXW7, and TP53 copy number, mRNA levels, and protein expression in gastric cancer and paired non-neoplastic specimens from 33 patients and also in gastric adenocarcinoma cell lines. We also determined the invasion potential of the gastric cancer cell lines. RESULTS: MYC amplification was observed in 51.5% of gastric tumor samples. Deletion of one copy of FBXW7 and TP53 was observed in 45.5% and 21.2% of gastric tumors, respectively. MYC mRNA expression was significantly higher in tumors than in non-neoplastic samples. FBXW7 and TP53 mRNA expression was markedly lower in tumors than in paired non-neoplastic specimens. Moreover, deregulated MYC and FBXW7 mRNA expression was associated with the presence of lymph node metastasis and tumor stage III-IV. Additionally, MYC immunostaining was more frequently observed in intestinal-type than diffuse-type gastric cancers and was associated with MYC mRNA expression. In vitro studies showed that increased MYC and reduced FBXW7 expression is associated with a more invasive phenotype in gastric cancer cell lines. This result encouraged us to investigate the activity of the gelatinases MMP-2 and MMP-9 in both cell lines. Both gelatinases are synthesized predominantly by stromal cells rather than cancer cells, and it has been proposed that both contribute to cancer progression. We observed a significant increase in MMP-9 activity in ACP02 compared with ACP03 cells. These results confirmed that ACP02 cells have greater invasion capability than ACP03 cells. CONCLUSION: In conclusion, FBXW7 and MYC mRNA may play a role in aggressive biologic behavior of gastric cancer cells and may be a useful indicator of poor prognosis. Furthermore, MYC is a candidate target for new therapies against gastric cancer.
Resumo:
Vinolo MA, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, Amaral CL, Fiamoncini J, Hirabara SM, Sato FT, Fock RA, Malheiros G, dos Santos MF, Curi R. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303: E272-E282, 2012. First published May 22, 2012; doi:10.1152/ajpendo.00053.2012.-The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNF alpha and IL-1 beta by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNF alpha production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.
Resumo:
Objective Vasoactive intestinal peptide (VIP) is a neuropeptide with elevated expression in regions that control urogenital functions. Estrogen appears to modulate VIP expression in various organs, but this effect has not been demonstrated in the vaginal wall. The aim of this study was to evaluate the influence of estrogen status on VIP expression in vessels of the vaginal wall. Methods Surgical specimens were removed from the vaginal walls of 18 premenopausal women and 12 postmenopausal women who were given surgery for genital prolapse grade I or II. Vaginal specimens were stained with estrogen receptor-alpha (ER-alpha) and VIP antibodies. Levels of follicle stimulating hormone (FSH), estradiol, prolactin, fasting glucose and serum thyroxine stimulating hormone were also measured. Estrogen status was assessed on the basis of FSH and ER-alpha scores. Results The vaginal walls of premenopausal women had significantly higher ER-alpha scores than those of menopausal women (premenopausal group, 3.6 +/- 2.2; menopausal group, 1.4 +/- 1.8; p = 0.01). Premenopausal women also had significantly higher levels of VIP in the vaginal wall than menopausal women (p = 0.02). Increasing age was associated with lower level of VIP staining (odds ratio 0.88; 95% confidence interval 0.78-0.99). Conclusion Levels of ER-alpha and VIP expression in the posterior vaginal wall were higher in premenopausal than in menopausal women, but VIP expression was not associated with estrogen status. Age was an independent predictor of VIP staining in vaginal wall biopsies.
Resumo:
The present study aimed to show the in vivo mechanisms of action of an indole-thiazolidine molecule peroxisome-proliferator activated receptor pan-agonist (PPAR pan) and cyclooxygenase (COX) inhibitor, LYSO-7, in an ethanol/HCl-induced (Et/HCl) gastric lesion model. Swiss male mice were treated with vehicle, LYSO-7 or Bezafibrate (p.o.) 1 hour before oral administration of Et/HCl (60%/0.03M). In another set of assays, animals were injected i.p. with an anti-granulocyte antibody, GW9962 or L-NG-nitroarginine methyl ester (L-NAME) before treatment. One hour after Et/HCl administration, neutrophils were quantified in the blood and bone marrow and the gastric microcirculatory network was studied in situ. The gastric tissue was used to quantify the percentage of damaged area, as well as myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) protein and PPARγ protein and gene expression. Acid secretion was evaluated by the pylorus ligation model. LYSO-7 or Bezafibrate treatment reduced the necrotic area. LYSO-7 treatment enhanced PPARγ gene and protein expression in the stomach, and impaired local neutrophil influx and stasis of the microcirculatory network caused by Et/HCl administration. The effect seemed to be due to PPARγ agonist activity, as the LYSO-7 effect was abolished in GW9962 pre-treated mice. The reversal of microcirculatory stasis, but not neutrophil influx, was mediated by nitric oxide (NO), as L-NAME pre-treatment abolished the LYSO-7-mediated reestablishment of microcirculatory blood flow. This effect may depend on enhanced eNOS protein expression in injured gastric tissue. The pH and concentration of H(+) in the stomach were not modified by LYSO-7 treatment. In addition, LYSO-7 may induce less toxicity, as 28 days of oral treatment did not induce weight loss, as detected in pioglitazone treated mice. Thus, we show that LYSO-7 may be an effective treatment for gastric lesions by controlling neutrophil influx and microcirculatory blood flow mediated by NO
Resumo:
The genetically determined muscular dystrophies are caused by mutations in genes coding for muscle proteins. Differences in the phenotypes are mainly the age of onset and velocity of progression. Muscle weakness is the consequence of myofiber degeneration due to an imbalance between successive cycles of degeneration/regeneration. While muscle fibers are lost, a replacement of the degraded muscle fibers by adipose and connective tissues occurs. Major investigation points are to elicit the involved pathophysiological mechanisms to elucidate how each mutation can lead to a specific degenerative process and how the regeneration is stimulated in each case. To answer these questions, we used four mouse models with different mutations causing muscular dystrophies, Dmd (mdx) , SJL/J, Large (myd) and Lama2 (dy2J) /J, and compared the histological changes of regeneration and fibrosis to the expression of genes involved in those processes. For regeneration, the MyoD, Myf5 and myogenin genes related to the proliferation and differentiation of satellite cells were studied, while for degeneration, the TGF-beta 1 and Pro-collagen 1 alpha 2 genes, involved in the fibrotic cascade, were analyzed. The result suggests that TGF-beta 1 gene is activated in the dystrophic process in all the stages of degeneration, while the activation of the expression of the pro-collagen gene possibly occurs in mildest stages of this process. We also observed that each pathophysiological mechanism acted differently in the activation of regeneration, with distinctions in the induction of proliferation of satellite cells, but with no alterations in stimulation to differentiation. Dysfunction of satellite cells can, therefore, be an important additional mechanism of pathogenesis in the dystrophic muscle.
Resumo:
Contents The aim of this study was to determine the effect of temporary inhibition of meiosis using the cyclin-dependent kinase inhibitor butyrolactone I (BLI) on gene expression in bovine oocytes and cumulus cells. Immature bovine cumulusoocyte complexes (COCs) were assigned to groups: (i) Control COCs collected immediately after recovery from the ovary or (ii) after in vitro maturation (IVM) for 24 h, (iii) Inhibited COCs collected 24 h after incubation with 100 mu m BLI or (iv) after meiotic inhibition for 24 h followed by IVM for a further 22 h. For mRNA relative abundance analysis, pools of 10 denuded oocytes and respective cumulus cells were collected. Transcripts related to cell cycle regulation and oocyte competence were evaluated in oocytes and cumulus cells by quantitative real-time PCR (qPCR). Most of the examined transcripts were downregulated (p < 0.05) after IVM in control and inhibited oocytes (19 of 35). Nine transcripts remained stable (p > 0.05) after IVM in control oocytes; only INHBA did not show this pattern in inhibited oocytes. Seven genes were upregulated after IVM in control oocytes (p < 0.05), and only PLAT, RBP1 and INHBB were not upregulated in inhibited oocytes after IVM. In cumulus cells, six genes were upregulated (p < 0.05) after IVM and eight were downregulated (p < 0.05). Cells from inhibited oocytes showed the same pattern of expression regarding maturation profile, but were affected by the temporary meiosis inhibition of the oocyte when the same maturation stages were compared between inhibited and control groups. In conclusion, changes in transcript abundance in oocytes and cumulus cells during maturation in vitro were mostly mirrored after meiotic inhibition followed by maturation.
Resumo:
Complementary sex determination in Hymenoptera implies that heterozygosity at the sex locus leads to the development of diploid females, whereas hemizygosity results in haploid males. Diploid males can arise through inbreeding. In social species, these pose a double burden on colony fitness, from significant reduction in its worker force and through being less viable and fertile than haploid males. Apart from being "misfits", diploid males are of interest to assess molecular correlates for possibly ploidy-related bionomic differences. Herein, we generated suppression subtractive cDNA libraries from newly emerged haploid and diploid males of the stingless bee Melipona quadrifasciata to enrich for differentially expressed genes. Gene Ontology classification revealed that in haploid males more DEGs were related to stress responsiveness, biosynthetic processes, reproductive processes and spermatogenesis, whereas in diploid ones differentially expressed genes were associated with cellular organization, nervous system development and amino acid transport were prevalent. Furthermore, both libraries contained over 40 % ESTs representing possibly novel transcripts. Quantitative RT-PCR analyses confirmed the differential expression of a representative DEG set in newly emerged males. Several muscle formation and energy metabolism-related genes were under-expressed in diploid males. On including 5-day-old males in the analysis, changes in transcript abundance during sexual maturation were revealed.
Resumo:
Introduction: Ovarian adenocarcinoma is frequently detected at the late stage, when therapy efficacy is limited and death occurs in up to 50% of the cases. A potential novel treatment for this disease is a monoclonal antibody that recognizes phosphate transporter sodium-dependent phosphate transporter protein 2b (NaPi2b). Materials and Methods: To better understand the expression of this protein in different histologic types of ovarian carcinomas, we immunostained 50 tumor samples with anti-NaPi2b monoclonal antibody MX35 and, in parallel, we assessed the expression of the gene encoding NaPi2b (SCL34A2) by in silico analysis of microarray data. Results: Both approaches detected higher expression of NaPi2b (SCL34A2) in ovarian carcinoma than in normal tissue. Moreover, a comprehensive analysis indicates that SCL34A2 is the only gene of the several phosphate transporters genes whose expression differentiates normal from carcinoma samples, suggesting it might exert a major role in ovarian carcinomas. Immunohistochemical and mRNA expression data have also shown that 2 histologic subtypes of ovarian carcinoma express particularly high levels of NaPi2b: serous and clear cell adenocarcinomas. Serous adenocarcinomas are the most frequent, contrasting with clear cell carcinomas, rare, and with worse prognosis. Conclusion: This identification of subgroups of patients expressing NaPi2b may be important in selecting cohorts who most likely should be included in future clinical trials, as a recently generated humanized version of MX35 has been developed.
Resumo:
Background Tumor markers are genes or their products expressed exclusively or preferentially in tumor cells and cancer-testis antigens (CTAs) form a group of genes with a typical expression pattern expressed in a variety of malignant neoplasms. CTAs are considered potential targets for cancer vaccines. It is possible that the CTA MAGE-A4 (melanoma antigen) and MAGE-C1 are expressed in carcinoma of the oral cavity and are related with survival. Methods This study involved immunohistochemical analysis of 23 patients with oral squamous cell carcinoma (SCC) and was carried out using antibodies for MAGE-A4 and MAGE-C1. Fisher's exact test and log-rank test were used to evaluate the results. Results The expression of the MAGE-A4 and MAGE-C1 were 56.5% and 47.8% without statistical difference in studied variables and survival. Conclusion The expression of at least 1 CTA was present in 78.3% of the patients, however, without correlation with clinicopathologic variables and survival. (c) 2011 Wiley Periodicals, Inc. Head Neck, 2012