33 resultados para Particle physics, QCD

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lattice calculations of the QCD trace anomaly at temperatures T < 160 MeV have been shown to match hadron resonance gas model calculations, which include an exponentially rising hadron mass spectrum. In this paper we perform a more detailed comparison of the model calculations to lattice data that confirms the need for an exponentially increasing density of hadronic states. Also, we find that the lattice data is compatible with a hadron density of states that goes as rho(m) similar to m(-a) exp(m/T-H) at large m with a > 5/2 (where T-H similar to 167 MeV). With this specific subleading contribution to the density of states, heavy resonances are most likely to undergo two-body decay (instead of multiparticle decay), which facilitates their inclusion into hadron transport codes. Moreover, estimates for the shear viscosity and the shear relaxation time coefficient of the hadron resonance model computed within the excluded volume approximation suggest that these transport coefficients are sensitive to the parameters that define the hadron mass spectrum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We observe a correlation between the slope of radio lateral distributions and the mean muon pseudorapidity of 59 individual cosmic-ray-air-shower events. The radio lateral distributions are measured with LOPES, a digital radio interferometer colocated with the multidetector-air-shower array KASCADE-Grande, which includes a muon-tracking detector. The result proves experimentally that radio measurements are sensitive to the longitudinal development of cosmic-ray air showers. This is one of the main prerequisites for using radio arrays for ultra-high-energy particle physics and astrophysics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Pierre Auger Observatory is a facility built to detect air showers produced by cosmic rays above 10(17) eV. During clear nights with a low illuminated moon fraction, the UV fluorescence light produced by air showers is recorded by optical telescopes at the Observatory. To correct the observations for variations in atmospheric conditions, atmospheric monitoring is performed at regular intervals ranging from several minutes (for cloud identification) to several hours (for aerosol conditions) to several days (for vertical profiles of temperature, pressure, and humidity). In 2009, the monitoring program was upgraded to allow for additional targeted measurements of atmospheric conditions shortly after the detection of air showers of special interest, e. g., showers produced by very high-energy cosmic rays or showers with atypical longitudinal profiles. The former events are of particular importance for the determination of the energy scale of the Observatory, and the latter are characteristic of unusual air shower physics or exotic primary particle types. The purpose of targeted (or "rapid") monitoring is to improve the resolution of the atmospheric measurements for such events. In this paper, we report on the implementation of the rapid monitoring program and its current status. The rapid monitoring data have been analyzed and applied to the reconstruction of air showers of high interest, and indicate that the air fluorescence measurements affected by clouds and aerosols are effectively corrected using measurements from the regular atmospheric monitoring program. We find that the rapid monitoring program has potential for supporting dedicated physics analyses beyond the standard event reconstruction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the influence of breakup channels on the complete fusion of weakly bound systems in terms of dynamic polarization potentials. It is argued that the enhancement of the cross section at sub-barrier energies may be consistent with recent experimental observations that nucleon transfer, often leading to breakup, is dominant compared to direct breakup. The main trends of the experimental complete fusion cross sections are analyzed in the framework of the DPP approach. The qualitative conclusions are supported by CDCC calculations including a sequential breakup channel, the one neutron stripping of Li-7 followed by the breakup of Li-6.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 10(18) eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 10(18) eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 10(18) eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new measurement of the B-11(p,alpha(0))Be-8 has been performed applying the Trojan horse method (THM) to the H-2(B-11,alpha Be-8(0))n quasi-free reaction induced at a laboratory energy of 27 MeV. The astrophysical S(E) factor has been extracted from similar to 600 keV down to zero energy by means of an improved data analysis technique and it has been compared with direct data available in the literature. The range investigated here overlaps with the energy region of the light element LiBeB stellar burning and with that of future aneutronic fusion power plants using the B-11+p fuel cycle. The new investigation described here confirms the preliminary results obtained in the recent TH works. The origin of the discrepancy between the direct estimate of the B-11(p,alpha(0))Be-8 S(E)-factor at zero energy and that from a previous THM investigation is quantitatively corroborated. The results obtained here support, within the experimental uncertainties, the low-energy S(E)-factor extrapolation and the value of the electron screening potential deduced from direct measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the CP-violating Minimal Supersymmetric Standard Model, we study the production of a neutralino-chargino pair at the LHC. For their decays into three leptons, we analyze CP asymmetries which are sensitive to the CP phases of the neutralino and chargino sector. We present analytical formulas for the entire production and decay process, and identify the CP-violating contributions in the spin correlation terms. This allows us to define the optimal CP asymmetries. We present a detailed numerical analysis of the cross sections, branching ratios, and the CP observables. For light neutralinos, charginos, and squarks, the asymmetries can reach several 10%. We estimate the discovery potential for the LHC to observe CP violation in the trilepton channel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments reach the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a "dark photon") or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino-electron and neutrino-nucleus scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present two-dimensional (2D) two-particle angular correlations measured with the STAR detector on relative pseudorapidity eta and azimuth phi for charged particles from Au-Au collisions at root s(NN) = 62 and 200 GeV with transverse momentum p(t) >= 0.15 GeV/c, vertical bar eta vertical bar <= 1, and 2 pi in azimuth. Observed correlations include a same-side (relative azimuth <pi/2) 2D peak, a closely related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until midcentrality, where a transition to a qualitatively different centrality trend occurs within one 10% centrality bin. Above the transition point the number of same-side and away-side correlated pairs increases rapidly relative to binary-collision scaling, the eta width of the same-side 2D peak also increases rapidly (eta elongation), and the phi width actually decreases significantly. Those centrality trends are in marked contrast with conventional expectations for jet quenching in a dense medium. The observed centrality trends are compared to perturbative QCD predictions computed in HIJING, which serve as a theoretical baseline, and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium predicted by theoretical calculations and phenomenological models. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy-ion collision scenarios that invoke rapid parton thermalization. If the collision system turns out to be effectively opaque to few-GeV partons the present observations would be inconsistent with the minijet picture discussed here. DOI: 10.1103/PhysRevC.86.064902

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles. Concerning a mass percentage of silver below 0.1%, the nanocomposites are homogeneous, and there is no particle aggregation. As the mass percentage of silver is increased, the system becomes unstable, and there is particle flocculation with subsequent segregation of the alanine crystals. The nanocomposites have been analyzed by transmission electron microscopy (TEM), UV-Vis absorption spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy and they have been tested as radiation detectors by means of electron spin resonance (ESR) spectroscopy in order to detect the paramagnetic centers created by the radiation. In fact, the sensitivity of the radiation detectors is optimized in the case of systems containing small particles (30 nm) that are well dispersed in the alanine matrix. As the agglomeration increases, particle growth (up to 1.5 mu m) and segregation diminish the sensitivity. In conclusion, nanostructured materials can be used for optimization of alanine sensitivity, by taking into account the influence of the particles size of the silver nanoparticles on the detection properties of the alanine radiation detectors, thus contributing to the construction of small-sized detectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report transverse momentum (p(T) <= 15 GeV/c) spectra of pi(+/-), K-+/-, p, (p) over bar, K-0(S), and rho(0) at midrapidity in p + p and Au + Au collisions at root s(NN) = 200 GeV. Perturbative QCD calculations are consistent with pi(+/-) spectra in p + p collisions but do not reproduce K and p((p) over bar) spectra. The observed decreasing antiparticle-to-particle ratios with increasing p(T) provide experimental evidence for varying quark and gluon jet contributions to high-p(T) hadron yields. The relative hadron abundances in Au + Au at p(T) >= 8 GeV/c are measured to be similar to the p + p results, despite the expected Casimir effect for parton energy loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use the QCD sum rules to study possible B-c-like molecular states. We consider isoscalar J(P) = 0(+) and J(P) = 1(+) D(*) B(*) molecular currents. We consider the contributions of condensates up to dimension eight and we work at leading order in alpha(s). We obtain for these states masses around 7 GeV. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748519]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dense enough compact objects were recently shown to lead to an exponentially fast increase of the vacuum energy density for some free scalar fields properly coupled to the spacetime curvature as a consequence of a tachyonic-like instability. Once the effect is triggered, the star energy density would be overwhelmed by the vacuum energy density in a few milliseconds. This demands that eventually geometry and field evolve to a new configuration to bring the vacuum back to a stationary regime. Here, we show that the vacuum fluctuations built up during the unstable epoch lead to particle creation in the final stationary state when the tachyonic instability ceases. The amount of created particles depends mostly on the duration of the unstable epoch and final stationary configuration, which are open issues at this point. We emphasize that the particle creation coming from the tachyonic instability will occur even in the adiabatic limit, where the spacetime geometry changes arbitrarily slowly, and therefore is quite distinct from the usual particle creation due to the change in the background geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the turbulence driven particle transport in Texas Helimak [K. W. Gentle and H. He, Plasma Sci. Technol. 10, 284 (2008)], a toroidal plasma device with a one-dimensional equilibrium with magnetic curvature and shear. Alterations on the radial electric field, through an external voltage bias, change the spectral plasma characteristics inducing a dominant frequency for negative bias values and a broad band frequency spectrum for positive bias values. When applying a negative bias, the transport is high where the waves propagate with phase velocities near the plasma flow velocity, an indication that the transport is strongly affected by a wave particle resonant interaction. On the other hand, for positive bias values, the plasma has a reversed shear flow, and we observe that the transport is almost zero in the shearless radial region, an evidence of a transport barrier in this region. (c) 2012 American Institute of Physics. [doi:10.1063/1.3676607]