5 resultados para Paper and cardboard
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This article describes a real-world production planning and scheduling problem occurring at an integrated pulp and paper mill (P&P) which manufactures paper for cardboard out of produced pulp. During the cooking of wood chips in the digester, two by-products are produced: the pulp itself (virgin fibers) and the waste stream known as black liquor. The former is then mixed with recycled fibers and processed in a paper machine. Here, due to significant sequence-dependent setups in paper type changeovers, sizing and sequencing of lots have to be made simultaneously in order to efficiently use capacity. The latter is converted into electrical energy using a set of evaporators, recovery boilers and counter-pressure turbines. The planning challenge is then to synchronize the material flow as it moves through the pulp and paper mills, and energy plant, maximizing customer demand (as backlogging is allowed), and minimizing operation costs. Due to the intensive capital feature of P&P, the output of the digester must be maximized. As the production bottleneck is not fixed, to tackle this problem we propose a new model that integrates the critical production units associated to the pulp and paper mills, and energy plant for the first time. Simple stochastic mixed integer programming based local search heuristics are developed to obtain good feasible solutions for the problem. The benefits of integrating the three stages are discussed. The proposed approaches are tested on real-world data. Our work may help P&P companies to increase their competitiveness and reactiveness in dealing with demand pattern oscillations. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In Brazil, Protected Areas (PAs) are considered the cornerstone for development of national strategies for biodiversity conservation. Considering this point of view we analyzed thirty protected areas belonging to Atlantic Central Corridor of Atlantic Forest in Bahia, aiming to identify and analyze its current level of implementation. Lemos de Sa and Ferreira (2000) methodology which consist of applying a standard scale, where the variation of the level of implementation conforms to a range of 0 to 5 points was used, with appropriate adaptations. After obtaining the data from the implementation level we use the aggregation method of Ward to help visualize the dissimilarity between the protected areas studied. We used an international classification proposed by IUCN (International Union for Conservation of Nature) for that the UCs to be compared with works done in another countries, the UCs considered are in the groups Ia, II, V and VI da IUCN. As results, 50% of protected areas analyzed are reasonably implemented, 40% inadequately implemented, 6.7% are presented only on paper and only 3.3% can be classified as satisfactorily implemented. These areas presents problems in their regularization; deficiency in infrastructure, human and financial resources. Given the results its clear the recurrent fact that conservation areas under study must be effectively implemented and for this to occur environmental policies should be focused on actions to consolidate the goals of conservation strategy.
Resumo:
This article describes a new design for a paper-based electrochemical system for flow injection analysis. Capillary wicking facilitates a gravity-driven flow of buffer solution continuously through paper and nitrocellulose, from a buffer reservoir at one end of the device to a sink at the other. A difference in height between the reservoir and the sink leads to a continuous and constant flow. The nitrocellulose lies horizontally on a working electrode, which consists of a thin platinum layer deposited on a solid support. The counter and reference electrodes are strategically positioned upstream in the buffer reservoir. A simple pipetting device was developed for reliable application of (sub)microliter volumes of sample without the need of commercial micropipets; this device did not damage the nitrocellulose membrane. Demonstration of the system for the determination of the concentration of glucose in urine resulted in a noninvasive, quantitative assay that could be used for diagnosis and monitoring of diabetes. This method does not require disposable test strips, with enzyme and electrodes, that are thrown away after each measurement Because of its low cost, this system could be used in medical environments that are resource-limited.
Resumo:
Review paper and Proceedings of the Inaugural Meeting of the Head and Neck Optical Diagnostics Society (HNODS) on March 14th 2009 at University College London.
Resumo:
The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.