2 resultados para PT-RE-OS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A variety of seemingly unrelated processes, such as core-mantle interaction, desulfurization, and direct precipitation from a silicate melt have been proposed to explain the formation of Ru-Os-Ir alloys (here referred to as osmiridiums) found in terrestrial mantle rocks. However, no consensus has yet been reached on how these important micrometer-sized phases form. In this paper we report the results of an experimental study on the solubilities of Ru, Os and Ir in sulfide melts (or mattes) as a function of alloy composition at 1300 degrees C. Considering the low solubilities of Ru, Os, and Ir in silicate melts, coupled with their high matte/silicate-melt partition coefficients, our results indicate that these elements concentrate initially at the ppm level in a matte phase in the mantle source region. During partial melting, the extraction of sulfur into silicate melt leads to a decrease in fS(2) that triggers the exsolution of osmiridiums from the refractory matte in the residue. The newly formed osmiridiums may persist in the terrestrial mantle for periods exceeding billions of years. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. Results: In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG’s annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. Conclusions: The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is currently being finished.