5 resultados para PREDICTIVE PERFORMANCE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Methods: Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. Results: We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. Conclusions: The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in countries with limited resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fraud is a global problem that has required more attention due to an accentuated expansion of modern technology and communication. When statistical techniques are used to detect fraud, whether a fraud detection model is accurate enough in order to provide correct classification of the case as a fraudulent or legitimate is a critical factor. In this context, the concept of bootstrap aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the adjusted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper, for the first time, we aim to present a pioneer study of the performance of the discrete and continuous k-dependence probabilistic networks within the context of bagging predictors classification. Via a large simulation study and various real datasets, we discovered that the probabilistic networks are a strong modeling option with high predictive capacity and with a high increment using the bagging procedure when compared to traditional techniques. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Rest myocardial perfusion imaging (MPI) is effective in managing patients with acute chest pain in developed countries. We aimed to define the role and feasibility of rest MPI in low-to-middle income countries. Methods and Results. Low-to-intermediate risk patients (n = 356) presenting with chest pain to ten centers in eight developing countries were injected with a Tc-99m-based tracer, and standard imaging was performed. The primary outcome was a composite of death, non-fatal myocardial infarction (MI), recurrent angina, and coronary revascularization at 30 days. Sixty-nine patients had a positive MPI (19.4%), and 52 patients (14.6%) had a primary outcome event. An abnormal rest-MPI result was the only variable which independently predicted the primary outcome [adjusted odds ratio (OR) 8.19, 95% confidence interval 4.10-16.40, P = .0001]. The association of MPI result and the primary outcome was stronger (adjusted OR 17.35) when only the patients injected during pain were considered. Rest-MPI had a negative predictive value of 92.7% for the primary outcome, improving to 99.3% for the hard event composite of death or MI. Conclusions. Our study demonstrates that rest-MPI is a reliable test for ruling out MI when applied to patients in developing countries. (J Nucl Cardiol 2012;19:1146-53.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last three decades, several predictive models have been developed to estimate the somatic production of macroinvertebrates. Although the models have been evaluated for their ability to assess the production of macrobenthos in different marine ecosystems, these approaches have not been applied specifically to sandy beach macrofauna and may not be directly applicable to this transitional environment. Hence, in this study, a broad literature review of sandy beach macrofauna production was conducted and estimates obtained with cohort-based and size-based methods were collected. The performance of nine models in estimating the production of individual populations from the sandy beach environment, evaluated for all taxonomic groups combined and for individual groups separately, was assessed, comparing the production predicted by the models to the estimates obtained from the literature (observed production). Most of the models overestimated population production compared to observed production estimates, whether for all populations combined or more specific taxonomic groups. However, estimates by two models developed by Cusson and Bourget provided best fits to measured production, and thus represent the best alternatives to the cohort-based and size-based methods in this habitat. The consistent performance of one of these Cusson and Bourget models, which was developed for the macrobenthos of sandy substrate habitats (C&B-SS), shows that the performance of a model does not depend on whether it was developed for a specific taxonomic group. Moreover, since some widely used models (e.g., the Robertson model) show very different responses when applied to the macrofauna of different marine environments (e.g., sandy beaches and estuaries), prior evaluation of these models is essential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Toxoplasmosis may be life-threatening in fetuses and in immune-deficient patients. Conventional laboratory diagnosis of toxoplasmosis is based on the presence of IgM and IgG anti-Toxoplasma gondii antibodies; however, molecular techniques have emerged as alternative tools due to their increased sensitivity. The aim of this study was to compare the performance of 4 PCR-based methods for the laboratory diagnosis of toxoplasmosis. One hundred pregnant women who seroconverted during pregnancy were included in the study. The definition of cases was based on a 12-month follow-up of the infants. Methods Amniotic fluid samples were submitted to DNA extraction and amplification by the following 4 Toxoplasma techniques performed with parasite B1 gene primers: conventional PCR, nested-PCR, multiplex-nested-PCR, and real-time PCR. Seven parameters were analyzed, sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and efficiency (Ef). Results Fifty-nine of the 100 infants had toxoplasmosis; 42 (71.2%) had IgM antibodies at birth but were asymptomatic, and the remaining 17 cases had non-detectable IgM antibodies but high IgG antibody titers that were associated with retinochoroiditis in 8 (13.5%) cases, abnormal cranial ultrasound in 5 (8.5%) cases, and signs/symptoms suggestive of infection in 4 (6.8%) cases. The conventional PCR assay detected 50 cases (9 false-negatives), nested-PCR detected 58 cases (1 false-negative and 4 false-positives), multiplex-nested-PCR detected 57 cases (2 false-negatives), and real-time-PCR detected 58 cases (1 false-negative). Conclusions The real-time PCR assay was the best-performing technique based on the parameters of Se (98.3%), Sp (100%), PPV (100%), NPV (97.6%), PLR (â^ž), NLR (0.017), and Ef (99%).