5 resultados para PRECIPITATE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Losartan is an antihypertensive agent that lost its patent protection in 2010, and, consequently, it has been available in generic form. The latter motivated the search for a rapid and precise alternative method. Here, a simple conductometric titration in aqueous medium is described for the losartan analysis in pharmaceutical formulations. The first step of the titration occurs with the protonation of losartan producing a white precipitate and resulting in a slow increase in conductivity. When the protonation stage is complete, a sharp increase in conductivity occurs which was determined to be due to the presence of excess of acid. The titrimetric method was applied to the determination of losartan in pharmaceutical products and the results are comparable with values obtained using a chromatographic method recommended by the United States Pharmacopoeia. The relative standard deviation for successive measurements of a 125 mg L-1 (2.71x10(-4) mol L-1) losartan solution was approximately 2%. Recovery study in tablet samples ranged between 99 and 102.4%. The procedure is fast, simple, and represents an attractive alternative for losartan quantification in routine analysis. In addition, it avoids organic solvents, minimizes the risk of exposure to the operator, and the waste treatment is easier compared to classical chromatographic methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crotamine, a 42-residue polypeptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, has been shown to be a cell-penetrating protein that targets chromosomes, carries plasmid DNA into cells, and shows specificity for actively proliferating cells. Given this potential role as a nucleic acid-delivery vector, we have studied in detail the binding of crotamine to single- and double-stranded DNAs of different lengths and base compositions over a range of ionic conditions. Agarose gel electrophoresis and ultraviolet spectrophotometry analysis indicate that complexes of crotamine with long-chain DNAs readily aggregate and precipitate at low ionic strength. This aggregation, which may be important for cellular uptake of DNA, becomes less likely with shorter chain length. 25-mer oligonucleotides do not show any evidence of such aggregation, permitting the determination of affinities and size via fluorescence quenching experiments. The polypeptide binds non-cooperatively to DNA, covering about 5 nucleotide residues when it binds to single (ss) or (ds) double stranded molecules. The affinities of the protein for ss-vs. ds-DNA are comparable, and inversely proportional to salt levels. Analysis of the dependence of affinity on [NaCl] indicates that there are a maximum of,3 ionic interactions between the protein and DNA, with some of the binding affinity attributable to non-ionic interactions. Inspection of the three-dimensional structure of the protein suggests that residues 31 to 35, Arg-Trp-Arg-Trp-Lys, could serve as a potential DNA-binding site. A hexapeptide containing this sequence displayed a lower DNA binding affinity and salt dependence as compared to the full-length protein, likely indicative of a more suitable 3D structure and the presence of accessory binding sites in the native crotamine. Taken together, the data presented here describing crotamine-DNA interactions may lend support to the design of more effective nucleic acid drug delivery vehicles which take advantage of crotamine as a carrier with specificity for actively proliferating cells. Citation: Chen P-C, Hayashi MAF, Oliveira EB, Karpel RL (2012) DNA-Interactive Properties of Crotamine, a Cell-Penetrating Polypeptide and a Potential Drug Carrier. PLoS ONE 7(11): e48913. doi:10.1371/journal.pone.0048913

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable carbon isotopic fractionation during calcium carbonate precipitation induced by urease-catalysed hydrolysis of urea was experimentally investigated in artificial water at a constant temperature of 30 degrees C. Carbon isotope fractionation during urea hydrolysis follows a Rayleigh distillation trend characterized by a C-13-enrichment factor of -20 to -22 parts per thousand. CaCO3 precipitate is up to 17.9 parts per thousand C-13-depleted relative to the urea substrate (-48.9 +/- 0.07 parts per thousand). Initial CaCO3 precipitate forms close to isotopic equilibrium with dissolved inorganic carbon. Subsequent precipitation occurs at -2 to -3 parts per thousand offset from isotopic equilibrium, suggesting that the initial delta C-13 value of CaCO3 is reset through dissolution followed by reprecipitation with urease molecules playing a role in offsetting the delta C-13 value of CaCO3 from isotopic equilibrium. Potentially, this isotopic systematics may provide a tool for the diagnosis of ureolytically-formed carbonate cements used as sealing agent. Moreover, it may serve as a basis to develop a carbon isotope tool for the quantification of ureolytically-induced CO2 sequestration. Finally, it suggests carbon isotope disequilibrium as a hallmark of past enzymatic activity in ancient microbial carbonate formation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strontium zirconate oxide was synthesized by co-precipitation and the citrate route and was evaluated as a heterogeneous catalyst for biodiesel production. The catalyst samples were characterized by XRD, FTIR, and TG, and catalytic activity was measured based on the ester content of the biodiesel produced that was quantified by GC. The co-precipitate samples were obtained in alkaline pH and had a mixture of the perovskite and pure strontium and zirconium oxide phases. Ester conversion using these samples was approximately 1.6%, indicating no catalytic activity. The citrate route was more efficient in producing perovskite when carried out at pH 7-8; excess SrCO3 was found on the catalyst surface due to CO2 adsorption, thus demonstrating no catalytic activity. The same synthesis carried out at pH 2 resulted in free OH- groups, with a small amount of the carbonate species that produced ester yield values of 98%. Therefore, matrices based on strontium zirconate produced via the citrate route in acidic media are potential heterogeneous catalysts for transesterification. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese tungstate (MnWO4) nanorods were prepared at room temperature by the co-precipitation method and synthesized after processing in a microwave-hydrothermal (MH) system at 140 degrees C for 6-96 min. These nanorods were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The growth direction, shape and average size distribution of nanorods were observed by means of transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). The optical properties of the nanorods were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy indicate that the MnWO4 precipitate is not a single phase structure while the nanorods synthesized by MH processing have a wolframite-type monoclinic structure without deleterious phases. FT-Raman spectra exhibited the presence of 17 Raman-active modes from 50 to 1,000 cm(-1). TEM and HR-TEM micrographs indicated that the nanorods are aggregated due to surface energy by Van der Waals forces and grow along the [100] direction. UV-vis absorption measurements confirmed non-linear values for the optical band gap (from 3.2 to 2.72 eV), which increased as the MH processing time increased. The structural characterizations indicated that the presence of defects in the MnWO4 precipitate promotes a significant contribution to maximum PL emission, while MnWO4 nanorods obtained by MH processing decrease the PL emission due to the reduction of defects in the lattice.