2 resultados para POLYCRYSTALLINE SM2-XCEXCUO4-Y
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Flux-Line-Lattice Melting and Upper Critical Field of Bi1.65Pb0.35Sr2Ca2Cu3O10+delta Ceramic Samples
Resumo:
We have conducted magnetoresistance measurements rho(T,H) in applied magnetic fields up to 18 T in Bi1.65Pb0.35Sr2Ca2Cu3O10+delta ceramic samples which were subjected to different uniaxial compacting pressures. The anisotropic upper critical fields H (c2)(T) were extracted from the rho(T,H) data, yielding and the out-of-plane superconducting coherence length xi (c) (0)similar to 3 . We have also estimated and xi (ab) (0) similar to 90 . In addition to this, a flux-line-lattice (FLL) melting temperature T (m) has been identified as a second peak in the derivative of the magnetoresistance d rho/dT data close to the superconducting transition temperature. An H (m) vs. T phase diagram was constructed and the FLL boundary lines were found to obey a temperature dependence H (m) ae(T (c) /T-1) (alpha) , where alpha similar to 2 for the sample subjected to the higher compacting pressure. A reasonable value of the Lindemann parameter c (L) similar to 0.29 has been found for all samples studied.
Resumo:
The spark plasma sintering (SPS) technique, by using a compacting pressure of 50 MPa, was used to consolidate pre-reacted powders of Bi1.65Pb0.35Sr2Ca2Cu3O10+delta (Bi-2223). The influence of the consolidation temperature, T-D, on the structural and electrical properties has been investigated and compared with those of a reference sample synthesized by the traditional solid-state reaction method and subjected to the same compacting pressure. From the X-ray diffraction patterns, performed in both powder and pellet samples, we have found that the dominant phase is the Bi-2223 in all samples but traces of the Bi2Sr2CaCu2O8+x (Bi-2212) were identified. Their relative density were similar to 85% of the theoretical density and the temperature dependence of the electrical resistivity, rho(T), indicated that increasing T-D results in samples with low oxygen content because the SPS is performed in vacuum. Features of the rho(T) data, as the occurrence of normal-state semiconductor-like behavior of rho(T) and the double resistive superconducting transition, are consistent with samples comprised of grains with shell-core morphology in which the shell is oxygen deficient. The SPS samples also exhibited superconducting critical current density at 77 K, J(c)(77K), between 2 and 10A/cm(2), values much smaller than similar to 22A/cm(2) measured in the reference sample. Reoxygenation of the SPS samples, post-annealed in air at different temperatures and times, was found to improve their microstructural and transport properties. Besides the suppression of the Bragg peaks belonging to the Bi-2212 phase, the superconducting properties of the post-annealed samples and particularly J(c)(77K) were comparable or better than those corresponding to the reference sample. Post-annealed samples at 750 degrees C for 5min exhibited J(c)(77K) similar to 130A/cm(2) even when uniaxially pressed at only 50 MPa. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768257]