4 resultados para PI compensator
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this article were studied two xanthone derivatives known as 1,5-dihydroxy-8-methoxyxanthone (I) and 1,3,7-trihydroxy-8-methoxyxanthone (II), which show one water molecule into their crystal structures. In xanthone I, there are water wires contributing to build up channel-like cavities along the c axis, whereas in xanthone II the water is surrounded by three xanthone molecules forming a cage-type structure. The geometries of I and II were optimized using the density functional theory method with B3LYP functional, and the results were compared with crystal structure. Both theoretical and experimental investigations reveal a concordance between structural parameters, with the xanthone core presenting an almost flat conformation and substituents adopting the more stable orientations. In the two compounds, the hydroxyl group linked at position 1 is involved in a resonance-assisted hydrogen bond with the carbonyl group. Besides, the supramolecular arrangement of the host/guest systems are stabilized mainly by classical intermolecular hydrogen bonds (O-H center dot center dot center dot O) involving xanthone-to-water and xanthone-to-xanthone. In addition, C-H center dot center dot center dot O weak hydrogen bonds, as well as pi-pi interactions play an important role to stabilize the crystal self-assembly of xanthones I and II. The results reported here underline the role of inclusion of water molecules and their different arrangement into the crystal structure of two xanthone host/guest systems.
Resumo:
Neutral-pion pi(0) spectra were measured at midrapidity (vertical bar y vertical bar < 0.35) in Au + Au collisions at root s(NN) = 39 and 62.4 GeV and compared with earlier measurements at 200 GeV in a transverse-momentum range of 1 < p(T) < 10 GeV/c. The high-p(T) tail is well described by a power law in all cases, and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding spectra for p + p collisions. The nuclear modification factors (RAA) show significant suppression, with a distinct energy, centrality, and p(T) dependence. Above p(T) = 7 GeV/c, R-AA is similar for root sNN = 62.4 and 200 GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe R-AA well at 200 GeV fail to describe the 39 GeV data, raising the possibility that, for the same p(T) region, the relative importance of initial-state effects and soft processes increases at lower energies. The p(T) range where pi(0) spectra in central Au + Au collisions have the same power as in p + p collisions is approximate to 5 and 7 GeV/c for root sNN = 200 and 62.4 GeV, respectively. For the root sNN = 39 GeV data, it is not clear whether such a region is reached, and the x(T) dependence of the x(T)-scaling power-law exponent is very different from that observed in the root sNN = 62 and 200 GeV data, providing further evidence that initial-state effects and soft processes mask the in-medium suppression of hardscattered partons to higher p(T) as the collision energy decreases.
Resumo:
Measurements of the differential cross section and the transverse single-spin asymmetry, A(N), vs x(F) for pi(0) and eta mesons are reported for 0.4 < x(F) < 0.75 at an average pseudorapidity of 3.68. A data sample of approximately 6.3 pb(-1) was analyzed, which was recorded during p(up arrow) + p collisions at root s = 200 GeV by the STAR experiment at RHIC. The average transverse beam polarization was 56%. The cross section for pi(0), including the previously unmeasured region of x(F) > 0.55, is consistent with a perturbative QCD prediction, and the eta/pi(0) cross-section ratio agrees with existing midrapidity measurements. For 0.55 < x(F) < 0.75, the average A(N) for eta is 0.210 +/- 0.056, and that for pi(0) is 0.081 +/- 0.016. The probability that these two asymmetries are equal is similar to 3%.
Resumo:
NIH, ICGEB, FAPESP, CNPq