3 resultados para PH-meter

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: The aim of the present study was to evaluate the physicochemical properties of a bioceramic root canal sealer, Endosequence BC Sealer. Radiopacity, pH, release of calcium ions (Ca2+), and flow were analyzed, and the results were compared with AH Plus cement. Methods: Radiopacity and flow were evaluated according to ISO 6876/2001 standards. For the radiopacity analysis, metallic rings with 10-mm diameter and 1-mm thickness were filled with cements. The radiopacity value was determined according to radiographic density (mm Al). The flow test was performed with 0.05 mL of cement placed on a glass plate. A 120-g weight was carefully placed over the cement. The largest and smallest diameters of the disks formed were measured by using a digital caliper. The release of Ca2+ and pH were measured at periods of 3, 24, 72, 168, and 240 hours with spectrophotometer and pH meter, respectively. Data were analyzed by analysis of variance and Tukey test (P < .05). Results: The bioceramic endodontic cement showed radiopacity (3.84 mm Al) significantly lower than that of AH Plus (6.90 mm Al). The pH analysis showed that Endosequence BC Sealer showed pH and release of Ca2+ greater than those of AH Plus (P < .05) during the experimental periods. The flow test revealed that BC Sealer and AH Plus presented flow of 26.96 mm and 21.17 mm, respectively (P < .05). Conclusions: Endosequence BC Sealer showed radiopacity and flow according to ISO 6876/2001 recommendations. The other physicochemical properties analyzed demonstrated favorable values for a root canal sealer. (J Endod 2012;38:842-845)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: The purpose of this study was to analyze the influence of ultrasonic activation of calcium hydroxide (CH) pastes on pH and calcium release in simulated external root resorptions. Methods: Forty-six bovine incisors had their canals cleaned and instrumented, and defects were created in the external middle third of the roots, which were then used for the study. The teeth were externally made impermeable, except for the defected area, and divided into the following 4 groups containing 10 samples each according to the CH paste and the use or not of the ultrasonic activation: group 1: propylene glycol without ultrasonic activation, group 2: distilled water without ultrasonic activation, group 3: propylene glycol with ultrasonic activation, and group 4: distilled water with ultrasonic activation. After filling the canals with the paste, the teeth were restored and individually immersed into flasks with ultrapure water. The samples were placed into other flasks after 7, 15, and 30 days so that the water pH level could be measured by means of a pH meter. Calcium release was measured by means of an atomic absorption spectrophotometer. Six teeth were used as controls. The results were statistically compared using the Kruskal-Wallis and Mann-Whitney U tests (P < .05). Results: For all periods analyzed, the pH level was found to be higher when the CH paste was activated with ultrasound. Calcium release was significantly greater (P < .05) using ultrasonic activation after 7 and 30 days. Conclusions: The ultrasonic activation of CH pastes favored a higher pH level and calcium release in simulated external root resorptions. (J Endod 2012;38:834-837)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To evaluate the effect of different chewing gum brands on the salivary pH of children with primary dentition. Method: Forty children were selected and assigned to four groups: control (no chewing gum); sugarless chewing gum; chewing gum with casein phosphopeptide-amorphous calcium phosphate; and chewing gum with xylitol. The first saliva collection was made after supervised tooth brushing for stabilization of the oral pH. Next, all children were instructed to drink slowly 100 mL of a cola-based soft drink (Coca-Cola®) and a new saliva collection was made 10 min later. Then, each group chewed on the chewing gum for 5 min and discarded it after this time. Saliva was collected again at 5, 10 and 15 min intervals after start using the chewing gum. Measurement of salivary pH was made with colorimetric test papers and a digital pH-meter. Data were analyzed statistically by analysis of variance and Tukey’s test at a 5% significance level. Results: The use of chewing gums accelerated the increase of salivary pH to considerably alkaline levels after consumption of an acidic beverage, especially within the first minutes. The highest levels were obtained in the groups of children that used chewing gums containing xylitol and casein phosphopeptide-amorphous calcium phosphate. Conclusion: Children that used the chewing gums after ingestion of an acidic soft drink presented an increase in salivary pH, with the best results in the groups that used chewing gums containing casein phosphopeptide-amorphous calcium phosphate and xylitol.