21 resultados para PERSISTENT CURRENTS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The State of Sao Paulo is the most developed area in Brazil and was impacted by persistent organic pollutants for several decades. This study investigated organochlorines in five species of small cetaceans (Pontoporia blainvillei, Stenella frontalis, Sotalia guianensis, Tursiops truncatus and Steno bredanensis) found dead along the coast of Sao Paulo between 1997 and 2003. DDTs (15.9 mu g g(-1) lipid: mean for all pooled individuals) and PCBs (8.08 mu g g(-1)) exhibited the highest concentrations in the animals, reflecting large amounts formerly used in Brazil. Lower levels of mirex (0.149 mu g g(-1)), HCB (0.051 mu g g(-1)), CHLs (0.008 mu g g(-1)) and HCHs (0.007 mu g g(-1)) were detected in all species. Residual pattern of DDTs in dolphins suggests that o,p`-DDT is more recalcitrant than p,p`-DDT in the body of the animals and/or the environment. In contrast to p,p`-DDT, residues of o,p`-DDT seem to be preferentially converted into o,p`-DDD rather than op-DDE. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The use of noninvasive cortical electrical stimulation with weak currents has significantly increased in basic and clinical human studies. Initial, preliminary studies with this technique have shown encouraging results; however, the safety and tolerability of this method of brain stimulation have not been sufficiently explored yet. The purpose of our study was to assess the effects of direct current (DC) and alternating current (AC) stimulation at different intensities in order to measure their effects on cognition, mood, and electroencephalogram. Methods: Eighty-two healthy, right-handed subjects received active and sham stimulation in a randomized order. We conducted 164 ninety-minute sessions of electrical stimulation in 4 different protocols to assess safety of (1) anodal DC of the dorsolateral prefrontal cortex (DLPFC); (2) cathodal DC of the DLPFC; (3) intermittent anodal DC of the DLPFC and; (4) AC on the zygomatic process. We used weak currents of 1 to 2 mA (for DC experiments) or 0.1 to 0.2 mA (for AC experiment). Results: We found no significant changes in electroencephalogram, cognition, mood, and pain between groups and a low prevalence of mild adverse effects (0.11% and 0.08% in the active and sham stimulation groups, respectively), mainly, sleepiness and mild headache that were equally distributed between groups. Conclusions: Here, we show no neurophysiological or behavioral signs that transcranial DC stimulation or AC stimulation with weak currents induce deleterious changes when comparing active and sham groups. This study provides therefore additional information for researchers and ethics committees, adding important results to the safety pool of studies assessing the effects of cortical stimulation using weak electrical currents. Further studies in patients with neuropsychiatric disorders are warranted.
Resumo:
The aim of this study was to evaluate micronucleus (MN) frequency in polychromatic erythrocytes (PCE) of female rats in persistent estrus (a model developed to mimic polycystic ovary syndrome) treated with selective estrogen receptor modulators (SERMs, tamoxifen, and raloxifene). Forty female Wistar-Hannover rats were divided into four groups of 10 animals each: Group I (normally cycling rats) and Group II (persistent estrus) both received only vehicle, while Group III (persistent estrus) was treated with tamoxifen (250 mu g/animal/day) and Group IV (persistent estrus) was treated with raloxifene (750 mu g/animal/day). Tamoxifen and raloxifene were given by oral gavage beginning on postnatal day 90 and continuing for 30 consecutive days. Peripheral blood samples were collected from tails 1 day following the last exposure. Blood smears were made on glass slides and stained with 10% Giemsa solution. ANOVA and a Tukey post-hoc test were used for data analysis. Mean percentages of MN were 1.82 +/- 0.13, 5.20 +/- 0.24, 3.32 +/- 0.13, and 3.04 +/- 0.12 in Groups I, II, III, and IV, respectively. The results indicate that tamoxifen and raloxifene similarly reduced the formation of MNPCE of female rats in persistent estrus (P < 0.0001 for Groups III and IV vs. Group II), using the dosages and time periods applied in the present study. The data suggest possibly antimutagenic effects of SERMs under high levels of estrogens. The findings also suggest that this is an interesting animal model for studying the genotoxicity of estrogens. Environ. Mol. Mutagen. 2012. (C) 2011 Wiley Periodicals, Inc.
Resumo:
In this work, the persistent luminescence mechanisms of Tb3+ (in CdSiO3) and Eu2+ (in BaAl2O4) based on solid experimental data are compared. The photoluminescence spectroscopy shows the different nature of the inter- and intraconfigurational transitions for Eu2+ and Tb3+, respectively. The electron is the charge carrier in both mechanisms, implying the presence of electron acceptor defects. The preliminary structural analysis shows a free space in CdSiO3 able to accommodate interstitial oxide ions needed by charge compensation during the initial preparation. The subsequent annealing removes this oxide leaving behind an electron trap. Despite the low band gap energy for CdSiO3, determined with synchrotron radiation UV-VUV excitation spectroscopy of Tb3+, the persistent luminescence from Tb3+ is observed only with UV irradiation. The need of high excitation energy is due to the position of F-7(6) level deep below the bottom of the conduction band, as determined with the 4f(8)-> 4f(7)5d(1) and the ligand-to-metal charge-transfer transitions. Finally, the persistent luminescence mechanisms are constructed and, despite the differences, the mechanisms for Tb3+ and Eu2+ proved to be rather similar. This similarity confirms the solidity of the interpretation of experimental data for the Eu2+ doped persistent luminescence materials and encourages the use of similar models for other persistent luminescence materials. (C) 2012 Optical Society of America
Resumo:
The fading of persistent luminescence in Sr2MgSi2O7:Eu2+,R3+ (R: Y, La-Nd, Sm-Lu) was studied combining thermoluminescence (TL) and room temperature (persistent) luminescence measurements to gain more information on the mechanism of persistent luminescence. The TL glow curves showed the main trap signal at ca. 80 degrees C, corresponding to 0.6 eV as the trap depth, with every R co-dopant. The TL measurements carried out with different irradiation times revealed the general order nature of the TL bands. The results obtained from the deconvolutions of the glow curves allowed the prediction of the fading of persistent luminescence with good accuracy, though only when using the Becquerel decay law. (C) 2012 Optical Society of America
Resumo:
The present status and future progress of the mechanisms of persistent luminescence are critically treated with the present knowledge. The advantages to be achieved by a further need as well as the pitfalls of the excessive use of imagination are shown. As usual, in the beginning of the present era of persistent luminescence since the mid 1990s, the imagination played a more important role than the sparse solid experimental data and the chemical common sense and knowledge was largely ignored. Since some five years, the mechanistic studies seem to have reached the maturity and - perhaps deceivingly - it seems that there are only details to be solved. However, the development of red emitting nanocrystalline materials poses a challenge also to the more fundamental studies and interpretation. The questions still luring in the darkness include the problems how the increased surface area affects the defect structure and how the "persistent energy transfer" really works. There is still some light to be thrown onto these matters starting with agreeing on the terminology: the term phosphorescence should be abandoned altogether. The long lifetime of persistent luminescence is due to trapping of excitation energy, not to the forbidden nature of the luminescent transition. However, the technically well-suited term "afterglow" should be retained for harmful, short persistent luminescence. (C) 2012 Optical Society of America
Resumo:
Objective: To screen for mutations in AMH and AMHR2 genes in patients with persistent Mullerian duct syndrome (PMDS). Patients and method: Genomic DNA of eight patients with PMDS was obtained from peripheral blood leukocytes. Directed sequencing of the coding regions and the exon-intron boundaries of AMH and AMHR2 were performed. Results: The AMH mutations p.Arg95*, p.Arg123Trp, c.556-2A>G, and p. Arg502Leu were identified in five patients; and p.Gly323Ser and p.Arg407* in AMHR2 of two individuals. In silico analyses of the novel c.556-2A>G, p.Arg502Leu and p.Arg407* mutations predicted that they were harmful and were possible causes of the disease. Conclusion: A likely molecular etiology was found in the eight evaluated patients with PMDS. Four mutations in AMH and two in AMHR2 were identified. Three of them are novel mutations, c.556-2A>G, and p. Arg502Leu in AMH; and p.Gly323Ser in AMHR2. Arq Bras Endocrinol Metab. 2012;56(8):473-8
Resumo:
Leao RM, Li S, Doiron B, Tzounopoulos T. Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior in a population of dorsal cochlear nucleus pyramidal neurons. J Neurophysiol 107: 3008-3019, 2012. First published February 29, 2012; doi:10.1152/jn.00660.2011.-Homeostatic mechanisms maintain homogeneous neuronal behavior among neurons that exhibit substantial variability in the expression levels of their ionic conductances. In contrast, the mechanisms, which generate heterogeneous neuronal behavior across a neuronal population, remain poorly understood. We addressed this problem in the dorsal cochlear nucleus, where principal neurons exist in two qualitatively distinct states: spontaneously active or not spontaneously active. Our studies reveal that distinct activity states are generated by the differential levels of a Ba2+-sensitive, inwardly rectifying potassium conductance (K-ir). Variability in K-ir maximal conductance causes variations in the resting membrane potential (RMP). Low K-ir conductance depolarizes RMP to voltages above the threshold for activating subthreshold-persistent sodium channels (Na-p). Once Na-p channels are activated, the RMP becomes unstable, and spontaneous firing is triggered. Our results provide a biophysical mechanism for generating neural heterogeneity, which may play a role in the encoding of sensory information.
Resumo:
Background: Evidence of self-sustained muscle activation following a brief electrical stimulation has been reported in the literature for certain muscles. Objectives: This report shows that the foot muscle (Flexor Digitorum Brevis - FDB) shows a self-sustained increase in muscle activity during upright stance in some subjects following a train of stimuli to the tibial nerve. Methods: Healthy subjects were requested to stand upright and surface EMG electrodes were placed on the FDB, Soleus and Tibialis Anterior muscles. After background muscle activity (BGA) acquisition, a 50 Hz train of stimuli was applied to the tibial nerve at the popliteal fossa. The root mean square values (RMS) of the BGA and the post-stimulus muscle activation were computed. Results: There was a 13.8% average increase in the FDB muscle EMG amplitude with respect to BGA after the stimulation was turned off. The corresponding post-stimulus Soleus EMG activity decreased by an average of 9.2%. We hypothesize that the sustained contraction observed in the FDB following stimulus may be evidence of persistent inward currents (PIC) generated in FDB spinal motoneurons. The post-stimulus decrease in soleus activity may have occurred due to the action of inhibitory interneurons caused by the PICs, which were triggered by the stimulus train. Conclusions: These sustained post-stimulation changes in postural muscle activity, found in different levels in different subjects, may be part of a set of possible responses that contribute to overall postural control.
Resumo:
The use of geoid models to estimate the Mean Dynamic Topography was stimulated with the launching of the GRACE satellite system, since its models present unprecedented precision and space-time resolution. In the present study, besides the DNSC08 mean sea level model, the following geoid models were used with the objective of computing the MDTs: EGM96, EIGEN-5C and EGM2008. In the method adopted, geostrophic currents for the South Atlantic were computed based on the MDTs. In this study it was found that the degree and order of the geoid models affect the determination of TDM and currents directly. The presence of noise in the MDT requires the use of efficient filtering techniques, such as the filter based on Singular Spectrum Analysis, which presents significant advantages in relation to conventional filters. Geostrophic currents resulting from geoid models were compared with the HYCOM hydrodynamic numerical model. In conclusion, results show that MDTs and respective geostrophic currents calculated with EIGEN-5C and EGM2008 models are similar to the results of the numerical model, especially regarding the main large scale features such as boundary currents and the retroflection at the Brazil-Malvinas Confluence.
Resumo:
In 1603, the Italian shoemaker Vincenzo Cascariolo found that a stone (baryte) from the outskirts of Bologna emitted light in the dark without any external excitation source. However, the calcination of the baryte was needed prior to this observation. The stone later named as the Bologna Stone was among the first luminescent materials and the first documented material to show persistent luminescence. The mechanism behind the persistent emission in this material has remained a mystery ever since. In this work, the Bologna Stone (BaS) was prepared from the natural baryte (Bologna, Italy) used by Cascariolo. Its properties, e. g. impurities (dopants) and their valences, luminescence, persistent luminescence and trap structure, were compared to those of the pure BaS materials doped with different (transition) metals (Cu, Ag, Pb) known to yield strong luminescence. The work was carried out by using different methods (XANES, TL, VUV-UV-vis luminescence, TGA-DTA, XPD). A plausible mechanism for the persistent luminescence from the Bologna Stone with Cu+ as the emitting species was constructed based on the results obtained. The puzzle of the Bologna Stone can thus be considered as resolved after some 400 years of studies.
Resumo:
Non-doped as well as titanium and lutetium doped zirconia (ZrO2) materials were synthesized via the sol-gel method and structurally characterized with X-ray powder diffraction. The addition of Ti in the zirconia lattice does not change the crystalline structure whilst the Lu doping introduces a small fraction of the tetragonal phase. The UV excitation results in a bright white-blue luminescence at ca. 500 nm for all the materials which emission could be assigned to the Ti3+ e(g) -> t(2g) transition. The persistent luminescence originates from the same Ti3+ center. The thermoluminescence data shows a well-defined though rather similar defect structures for all the zirconia materials. The kinetics of persistent luminescence was probed with the isothermal decay curve analyses which indicated significant retrapping. The short duration of persistent luminescence was attributed to the quasi-continuum distribution of the traps and to the possibility of shallow traps even below the room temperature. (C) 2012 Optical Society of America
Resumo:
Hyperprolactinemia is a common cause of menstrual disturbances affecting young women. There is a diversity of causes, from physiological, such as pregnancy, to pharmacological and pathological, such as hypothyroidism. Renal and hepatic failure, intercostal nerve stimulation by trauma or surgery, prolactinomas, other tumors in the hypothalamus-pituitary region, as well as macroprolactinemia can also be considered. Identifying the correct cause is important to establish the correct treatment. Should all these causes be ruled out and pituitary imaging revealed as negative, idiopathic hyperprolactinemia is therefore diagnosed. In symptomatic patients, treatment with dopaminergic agonists is indicated. As for the asymptomatic hyperprolactinemic individuals, macroprolactinemia should be screened, and once it is detected, there is no need for pituitary imaging study or for dopaminergic agonist use. (J Clin Endocrinol Metab 97: 2211-2216, 2012)
Resumo:
Persistent organic pollutants (POPS) present in the living environment are thought to have detrimental health effects on the population, with pregnant women and the developing foetus being at highest risk. We report on the levels of selected POPs in maternal blood of 155 delivering women residing in seven regions within the Sao Paulo State, Brazil. The following selected POPs were measured in the maternal whole blood: 12 polychlorinated biphenyls (PCBs) congeners (IUPAC Nos. 99, 101, 118, 138, 153, 156, 163, 170, 180, 183, 187, 194); dichlordiphenyltrichloroethane p,p'-DDT, diphenyldichloroethylene p,p'-DDE and other pesticides such as hexachlorocyclohexanes (alpha-HCH, beta-HCH, gamma-HCH), hexachlorobenzene (HCB), chlordane derivatives cis-chlordane, trans-chlordane. oxy-chlordane, cis-nonachlor and trans-nonachlor. Statistical comparisons between regions were performed only on compounds having concentrations above LOD in 70% of the samples. PCB118 congener was found to be highest in the industrial site (mean 4.97 ng/g lipids); PCB138 congener concentration was highest in the Urban 3 site (mean 4.27 ng/g lipids) and congener PCB153 was highest in the industrial and Urban 3 sites with mean concentration of 7.2 ng/g lipids and 5.89 ng/g lipids respectively. Large differences in levels of p,p'-DDE between regions were observed with the Urban 3 and industrial sites having the highest concentrations of 645 ng/g lipids and 417 ng/g lipids, respectively; beta-HCH was found to be highest in the Rural 1 site; the gamma-HCH in Rural 1 and industrial; the HCB in the Rural 1 and industrial sites and oxy-chlordane and t-NC in the Rural 2 sites. An association between levels of some contaminants and maternal age and parity was also found. (C) 2011 Elsevier Ltd. All rights reserved.
Models of passive and active dendrite motoneuron pools and their differences in muscle force control
Resumo:
Motoneuron (MN) dendrites may be changed from a passive to an active state by increasing the levels of spinal cord neuromodulators, which activate persistent inward currents (PICs). These exert a powerful influence on MN behavior and modify the motor control both in normal and pathological conditions. Motoneuronal PICs are believed to induce nonlinear phenomena such as the genesis of extra torque and torque hysteresis in response to percutaneous electrical stimulation or tendon vibration in humans. An existing large-scale neuromuscular simulator was expanded to include MN models that have a capability to change their dynamic behaviors depending on the neuromodulation level. The simulation results indicated that the variability (standard deviation) of a maintained force depended on the level of neuromodulatory activity. A force with lower variability was obtained when the motoneuronal network was under a strong influence of PICs, suggesting a functional role in postural and precision tasks. In an additional set of simulations when PICs were active in the dendrites of the MN models, the results successfully reproduced experimental results reported from humans. Extra torque was evoked by the self-sustained discharge of spinal MNs, whereas differences in recruitment and de-recruitment levels of the MNs were the main reason behind torque and electromyogram (EMG) hysteresis. Finally, simulations were also used to study the influence of inhibitory inputs on a MN pool that was under the effect of PICs. The results showed that inhibition was of great importance in the production of a phasic force, requiring a reduced co-contraction of agonist and antagonist muscles. These results show the richness of functionally relevant behaviors that can arise from a MN pool under the action of PICs.