3 resultados para PASTURE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The adoption of no-till system (NTS) combined with crop-livestock integration (CLI) has been a strategy promoted in Brazil, aiming to maximize areas yield and increase agribusiness profitability. This study aimed to evaluate grains yield and phytotechnical attributes from maize and soybean culture by CLI system under NTS after winter annual pure and diversified pastures with the absence or presence of grazing animals. The experiment was installed in Castro (Parana State, Brazil) on in a dystrophic Humic Rhodic Hapludox with a clay texture, using experimental design of randomized complete blocks in 4 x 2 factorial scheme with three replications. Treatments included four pasture combinations (diversified or pure) and animal categories (light and heavy) subjected or not to grazing animals during the winter. During 2008/09 and 2009/10 summers, the area was cultivated with soybeans and maize, respectively, with yield assessment of grains and phytotechnical attributes. Treatments did not alter the yield and weight of a thousand seeds (WTS) of soybeans. In maize culture, the grazing animal during the winter increased the plant population and grains yield, but gave slight decrease in WTS. Pasture combinations (diversified or pure) and animal categories (light and heavy) did not interfere in soybean culture, but benefited the maize crop.
Resumo:
We tested the early performance of 16 native early-, mid-, and late-successional tree species in response to four intensities of grass removal in an abandoned cattle pasture dominated by the introduced, invasive African grass, Cynodon plectostachyus, within the Lacandon rainforest region, southeast Mexico. The increase in grass removals significantly improved the performance of many species, especially of early-and mid-successional species, while performance of late-successional species was relatively poor and did not differ significantly among treatments. Good site preparation and at least one additional grass removal four months after seedling transplant were found to be essential; additional grass removals led to improved significantly performance of saplings in most cases. In order to evaluate the potential of transplanting tree seedlings successfully in abandoned tropical pastures, we developed a "planting risk index", combining field performance measurements and plantation cost estimations. Our results showed a great potential for establishing restoration plantings with many early-and mid-successional species. Although planting risk of late-successional species was considered high, certain species showed some possibilities of acclimation after 18 months and should be considered in future plantation arrangements in view of their long-term contributions to biodiversity maintenance and also to human welfare through delivery of ecosystem services. Conducting a planting risk analysis can help avoid failure of restoration strategies involving simultaneous planting of early-, mid-, and late-successional tree species. This in turn will improve cost-effectiveness of initial interventions in large-scale, long-term restoration programs.
Resumo:
Soil sulfur (S) partitioning among the various pools and changes in tropical pasture ecosystems remain poorly understood. Our study aimed to investigate the dynamics and distribution of soil S fractions in an 8-year-old signal grass (Brachiaria decumbens Stapf.) pasture fertilized with nitrogen (N) and S. A factorial combination of two N rates (0 and 600?kg N ha1 y1, as NH4NO3) and two S rates (0 and 60?kg S ha1 y1, as gypsum) were applied to signal grass pastures during 2 y. Cattle grazing was controlled during the experimental period. Organic S was the major S pool found in the tropical pasture soil, and represented 97% to 99% of total S content. Among the organic S fractions, residual S was the most abundant (42% to 67% of total S), followed by ester-bonded S (19% to 42%), and C-bonded S (11% to 19%). Plant-available inorganic SO4-S concentrations were very low, even for the treatments receiving S fertilizers. Low inorganic SO4-S stocks suggest that S losses may play a major role in S dynamics of sandy tropical soils. Nitrogen and S additions affected forage yield, S plant uptake, and organic S fractions in the soil. Among the various soil fractions, residual S showed the greatest changes in response to N and S fertilization. Soil organic S increased in plots fertilized with S following the residual S fraction increment (16.6% to 34.8%). Soils cultivated without N and S fertilization showed a decrease in all soil organic S fractions.