54 resultados para PARAVENTRICULAR NUCLEUS OF HYPOTHALAMUS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We investigated the cardiovascular effects of the microinjection of L-proline (L-Pro) into the third ventricle (3V) and its peripheral mechanisms. Different doses of L-Pro into the 3V caused dose-related pressor and bradycardiac responses. The pressor response to L-Pro injected into the 3V was potentiated by intravenous pretreatment with the ganglion blocker pentolinium (5 mg/kg), thus excluding any significant involvement of the sympathetic nervous system. Because the response to the microinjection of L-Pro into the 3V was blocked by intravenous pretreatment with the V1-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP (50 mu g/kg), it is suggested that these cardiovascular responses are mediated by a vasopressin release. The pressor response to the microinjection of L-Pro into the 3V was found to be mediated by circulating vasopressin, so, given that the paraventricular nucleus of the hypothalamus (PVN) is readily accessible from the 3V, we investigated whether the PVN could be a site of action for the L-Pro microinjected in the 3V. The microinjection of L-Pro (0.033 mu moles/0.1 mu l) into the PVN caused cardiovascular responses similar to those of injection of the 3V and were also shown to be mediated by vasopressin release. In conclusion, these results show that the microinjection of L-Pro into the 3V causes pressor and bradycardiac responses that could involve stimulation of the magnocellular cells of the PVN and release of vasopressin into the systemic circulation. Also, because the microinjection of L-Pro into the PVN caused a pressor response, this is the first evidence of cardiovascular effects caused by its injection in a supramedullary structure. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The medial amygdaloid nucleus (MeA) is a part of the limbic system and is involved in cardiovascular modulation. We previously reported that microinjection of noradrenaline (NA) into the MeA of unanesthetized rats caused pressor and bradycardiac responses, which were mediated by acute vasopressin release into the systemic circulation. In the present study, we tested the possible involvement of magnocellular neurons of the paraventricular (PVN) and/or supraoptic (SON) of the hypothalamus that synthesize vasopressin in the cardiovascular pathway activated by the microinjection of NA into the MeA. Pressor and bradycardiac responses to the microinjection of NA (27 nmol/100 nL) into the MeA were blocked by pretreatment of either the PVN or the SON with cobalt chloride (CoCl2, 1 mM/100 nL), thus indicating that both hypothalamic nuclei mediate the cardiovascular responses evoked by microinjection of NA Into the MeA. Our results suggest that the pressor and bradycardiac response caused by the microinjection of NA into the MeA is mediated by magnocellular neurons in both the PVN and SON. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
We have previously reported that noradrenaline (NA) microinjected into the lateral septal area (LSA) caused pressor and bradicardic responses that were mediated by vasopressin release into the circulation through the paraventricular nucleus of hypothalamus (PVN). Although PVN is the final structure involved in the cardiovascular responses caused by NA in the LSA, there is no evidence of direct connections between these areas, suggesting that some structures could be links in this pathway. In the present study, we verified the effect of reversible synaptic inactivation of the medial amygdaloid nucleus (MeA), bed nucleus of stria terminalis (BNST) or diagonal band of Broca (DBB) with Cobalt Chloride (CoCl2) on the cardiovascular response to NA microinjection into the LSA of unanesthetized rats. Male Wistar rats had guide cannulae implanted into the LSA and the MeA, BNST or DBB for drug administration, and a femoral catheter for blood pressure and heart rate recordings. Local microinjection of CoCl2 (1 mm in 100 nL) into the MeA significantly reduced the pressor and bradycardic responses caused by NA microinjection (21 nmol in 200 nL) into the LSA. In contrast, microinjection of CoCl2 into the BNST or DBB did not change the cardiovascular responses to NA into the LSA. The results indicate that synapses within the MeA, but not in BNST or DBB, are involved in the cardiovascular pathway activated by NA microinjection into the LSA.
Resumo:
P2X receptors are expressed on ventrolateral medulla projecting paraventricular nucleus (PVN) neurons. Here, we investigate the role of adenosine 5′-triphosphate (ATP) in modulating sympathetic nerve activity (SNA) at the level of the PVN. We used an in situ arterially perfused rat preparation to determine the effect of P2 receptor activation and the putative interaction between purinergic and glutamatergic neurotransmitter systems within the PVN on lumbar SNA (LSNA). Unilateral microinjection of ATP into the PVN induced a dose-related increase in the LSNA (1 nmol: 38 ± 6 %, 2.5 nmol: 72 ± 7 %, 5 nmol: 96 ± 13 %). This increase was significantly attenuated by blockade of P2 receptors (pyridoxalphosphate-6-azophenyl-20,40-disulphonic acid, PPADS) and glutamate receptors (kynurenic acid, KYN) or a combination of both. The increase in LSNA elicited by L-glutamate microinjection into the PVN was not affected by a previous injection of PPADS. Selective blockade of non-N-methyl-D-aspartate receptors (6-cyano-7-nitroquinoxaline-2,3-dione disodium salt, CNQX), but not N-methyl-D-aspartate receptors (NMDA) receptors (DL-2-amino-5-phosphonopentanoic acid, AP5), attenuated the ATP-induced sympathoexcitatory effects at the PVN level. Taken together, our data show that purinergic neurotransmission within the PVN is involved in the control of SNA via P2 receptor activation. Moreover, we show an interaction between P2 receptors and non-NMDA glutamate receptors in the PVN suggesting that these functional interactions might be important in the regulation of sympathetic outflow
Resumo:
The paraventricular nucleus of hypothalamus (PVN) is a well known site of integration for autonomic and cardiovascular responses, and the glutamate neurotransmitter plays an important role. The aim of our study was to evaluate the cardiovascular parameters and autonomic modulation by means of spectral analysis after ionotropic glutamate receptor inhibition in the PVN in conscious sedentary (S) or swimming trained (ST) rats. After exercise training protocol, adult male Wistar rats, instrumented with guide cannulae to PVN and artery and vein catheters were submitted to mean arterial pressure (MAP) and heart rate (HR) recording. At baseline, physical training induced a resting bradycardia (S: 379 +/- 3, ST: 349 +/- 2 bpm, P<0.05) and promoted adaptations in HRV characterized by an increase of HF in normalized values and a decrease of LF in absolute and normalized units compared with the sedentary group. Microinjection of kynurenic acid (KYNA) in the PVN of sedentary and trained rats promoted decreases in MAP and HR, but the decrease in HR was smaller in the trained animals (Delta HRS: -48 +/- 7, ST: -28 +/- 4 bpm, P<0.05). Furthermore, the differences in baseline parameters of pulse interval, found between sedentary and trained animals, disappeared after KYNA microinjection in the PVN. Our data suggest that the cardiovascular and autonomic adaptations to the heart induced by exercise training may involve glutamatergic mechanisms in the PVN. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Recent evidence indicates that the administration of inhibitors of neuronal nitric oxide synthase (nNOS) induces antidepressant-like effects in animal models such as the forced swimming test (FST). However, the neural circuits involved in these effects are not yet known. Therefore, this study investigated the expression of Fos protein, a marker of neuronal activity, in the brain of rats submitted to FST and treated with the preferential nNOS inhibitor, 7-nitroindazole (7-NI), or with classical antidepressant drugs (Venlafaxine and Fluoxetine). Male Wistar rats were submitted to a forced swimming pretest (PT) and, immediately after, started receiving a sequence of three ip injections (0, 5, and 23 h after PT) of Fluoxetine (10 mg/kg), Venlafaxine (10 mg/kg), 7-NI (30 mg/kg) or respective vehicles. One hour after the last drug injection the animals were submitted to the test session, when immobility time was recorded. After the FST they were sacrificed and had their brains removed and processed for Fos immunohistochemistry. Independent group of non-stressed animals received the same drug treatments, or no treatment (naive). 7-NI, Venlafaxine or Fluoxetine reduced immobility time in the FST, an antidepressant-like effect. None of the treatments induce significant changes in Fos expression per se. However, swimming stress induced significant increases in Fos expression in the following brain regions: medial prefrontal cortex, nucleus accumbens, locus coeruleus, raphe nuclei, striatum, hypothalamic nucleus, periaqueductal grey, amygdala, habenula, paraventricular nucleus of hypothalamus, and bed nucleus of stria terminalis. This effect was attenuated by 7-NI, Venlafaxine or Fluoxetine. These results show that 7-NI produces similar behavioral and neuronal activation effects to those of typical antidepressants, suggesting that these drugs share common neurobiological substrates.
Resumo:
We evaluated the involvement of paraventricular nucleus (PVN) in the changes in mean arterial pressure (MAP) and heart rate (HR) during an orthostatic challenge (head up tilt, HUT). Adult male Wistar rats, instrumented with guide cannulas to PVN and artery and vein catheters were submitted to MAP and HR recording in conscious state and induction of HUT. The HUT induced an increase in MAP and HR and the pretreatment with prazosin and atenolol blocked these effects. After inhibition of neurotransmission with cobalt chloride (1 mM/100 nl) into the PVN the HR parameters did not change, however we observed a decrease in MAP during HUT. Our data suggest the involvement of PVN in the brain circuitry involved in cardiovascular adjustment during orthostatic challenges. (C) 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Resumo:
The paraventricular nucleus (PVN) of the hypothalamus plays an important role in the regulation of sympathetic nerve activity, which is significantly elevated in chronic heart failure (CHF). Fractalkine (FKN) and its cognate receptor, CX3CR1, are constitutively expressed in the central nervous system, but their role and physiological significance are not well known. The aims of the present study were to determine whether FKN plays a cardiovascular role within the PVN and to investigate how the actions of FKN might be altered in CHF. We show that both FKN and CX3CR1 are expressed on neurons in the PVN of rats, suggesting that they may have a physiological function in this brain nucleus. Unilateral microinjection of FKN directly into the PVN of anaesthetized rats elicited a significant dose-related decrease in blood pressure (1.0 nmol, -5 ± 3 mmHg; 2.5 nmol, -13 ± 2 mmHg; 5.0 nmol, -22 ± 3 mmHg; and 7.5 nmol, -32 ± 3 mmHg) and a concomitant increase in heart rate (1.0 nmol, 6 ± 3 beats min(-1); 2.5 nmol, 11 ± 3 beats min(-1); 5 nmol, 18 ± 4 beats min(-1); and 7.5 nmol, 27 ± 5 beats min(-1)) compared with control saline microinjections. In order to determine whether FKN signalling is altered in rats with CHF, we first performed quantitative RT-PCR and Western blot analysis and followed these experiments with functional studies in rats with CHF and sham-operated control rats. We found a significant increase in CX3CR1 mRNA and protein expression, as determined by quantitative RT-PCR and Western blot analysis, respectively, in the PVN of rats with CHF compared with sham-operated control rats. We also found that the blood pressure effects of FKN (2.5 nmol in 50 nl) were significantly attenuated in rats with CHF (change in mean arterial pressure, -6 ± 3 mmHg) compared with sham-operated control rats (change in mean arterial pressure, -16 ± 6 mmHg). These data suggest that FKN and its receptor, CX3CR1, modulate cardiovascular function at the level of the PVN and that the actions of FKN within this nucleus are altered in heart failure
Resumo:
Stern JE, Sonner PM, Son SJ, Silva FC, Jackson K, Michelini LC. Exercise training normalizes an increased neuronal excitability of NTS-projecting neurons of the hypothalamic paraventricular nucleus in hypertensive rats. J Neurophysiol 107: 2912-2921, 2012. First published February 22, 2012; doi:10.1152/jn.00884.2011.-Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na+ spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.
Resumo:
During exercise, intense brain activity orchestrates an increase in muscle tension. Additionally, there is an increase in cardiac output and ventilation to compensate the increased metabolic demand of muscle activity and to facilitate the removal of CO2 from and the delivery of O-2 to tissues. Here we tested the hypothesis that a subset of pontomedullary and hypothalamic neurons could be activated during dynamic acute exercise. Male Wistar rats (250-350 g) were divided into an exercise group (n = 12) that ran on a treadmill and a no-exercise group (n = 7). Immunohistochemistry of pontomedullary and hypothalamic sections to identify activation (c-Fos expression) of cardiorespiratory areas showed that the no-exercise rats exhibited minimal Fos expression. In contrast, there was intense activation of the nucleus of the solitary tract, the ventrolateral medulla (including the presumed central chemoreceptor neurons in the retrotrapezoid/parafacial region), the lateral parabrachial nucleus, the Kolliker-Fuse region, the perifornical region, which includes the perifornical area and the lateral hypothalamus, the dorsal medial hypothalamus, and the paraventricular nucleus of the hypothalamus after running exercise. Additionally, we observed Fos immunoreactivity in catecholaminergic neurons within the ventrolateral medulla (C1 region) without Fos expression in the A2, A5 and A7 neurons. In summary, we show for the first time that after acute exercise there is an intense activation of brain areas crucial for cardiorespiratory control. Possible involvement of the central command mechanism should be considered. Our results suggest whole brain-specific mobilization to correct and compensate the homeostatic changes produced by acute exercise. (c) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Several studies from our group have indicated that the BNST play an important role in baroreflex modulation. However, the involvement of the BNST in the chemoreflex activity is unknown. Thus, in the present study, we investigated the effect of the local bed nucleus of stria terminalis (BNST) neurotransmission inhibition by bilateral microinjections of the non-selective synaptic blocker cobalt chloride (CoCl2) on the cardiovascular responses to chemoreflex activation in rats. For this purpose, chemoreflex was activated with KCN (i.v.) before and after microinjections of CoCl2 into the BNST. Reversible BNST inactivation produced no significant changes in the magnitude and durations of both pressor and bradycardic responses to intravenous KCN infusion. These findings suggesting that BNST neurotransmission have not influence on both sympathoexcitatory and parasympathoexcitatory components of the peripheral chemoreflex activation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Systemic administration of cannabidiol (CBD) attenuates cardiovascular and behavioral changes induced by re-exposure to a context that had been previously paired with footshocks. Previous results from our group using cFos immunohistochemistry suggested that the bed nucleus of the stria terminalis (BNST) is involved in this effect. The mechanisms of CBD effects are still poorly understood, but could involve 5-HT1A receptor activation. Thus, the present work investigated if CBD administration into the BNST would attenuate the expression of contextual fear conditioning and if this effect would involve the activation of 5-HT1A receptors. Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (six footshocks, 1.5 mA/3 s). Twenty-four hours later freezing and cardiovascular responses (mean arterial pressure and heart rate) to the conditioning box were measured for 10 min. CBD (15, 30 or 60 nmol) or vehicle was administered 10 min before the re-exposure to the aversive context. The second experiment was similar to the first one except that animals received microinjections of the 5-HT1A receptor antagonist WAY100635 (0.37 nmol) 5 min before CBD (30 nmol) treatment. The results showed that CBD (30 and 60 nmol) treatment significantly reduced the freezing and attenuated the cardiovascular responses induced by re-exposure to the aversive context. Moreover, WAY100635 by itself did not change the cardiovascular and behavioral response to context, but blocked the CBD effects. These results suggest that CBD can act in the BNST to attenuate aversive conditioning responses and this effect seems to involve 5-HT1A receptor-mediated neurotransmission.
Resumo:
A growing body of evidence indicates that facilitation of serotonin-2C receptor (5-HT2CR)-mediated neurotransmission in the basolateral nucleus of the amygdala (BLA) is involved in anxiety generation. We investigated here whether BLA 5-HT(2C)Rs exert a differential role in the regulation of defensive behaviours related to generalized anxiety (inhibitory avoidance) and panic (escape) disorders. We also evaluated whether activation of BLA 5-HT(2C)Rs accounts for the anxiogenic effect caused by acute systemic administration of the antidepressants imipramine and fluoxetine. Male Wistar rats were tested in the elevated T-maze after intra-BLA injection of the endogenous agonist 5-HT, the 5-HT2CR agonist MK-212 or the 5-HT2CR antagonist SB-242084. This test allows the measurement of inhibitory avoidance acquisition and escape expression. We also investigated whether intra-BLA administration of SB-242084 interferes with the acute anxiogenic effect caused by imipramine and fluoxetine in the Vogel conflict test, and imipramine in the elevated T-maze. While intra-BLA administration of 5-HT and MK-212 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, SB-242084 had the opposite effect. None of these drugs affected escape performance. Intra-BLA injection of a sub-effective dose of SB-242084 fully blocked the anxiogenic effect caused either by the local microinjection of 5-HT or the systemic administration of imipramine and fluoxetine. Our findings indicate that 5-HT(2C)Rs in BLA are selectively involved in the regulation of defensive behaviours associated with generalized anxiety, but not panic. The results also provide the first direct evidence that activation of BLA 5-HT(2C)Rs accounts for the short-term aversive effect of antidepressants.
Resumo:
Evidence from appetitive Pavlovian and instrumental conditioning studies suggest that the amygdala is involved in modulation of responses correlated with motivational states, and therefore, to the modulation of processes probably underlying reinforcement omission effects. The present study aimed to clarify whether or not the mechanisms related to reinforcement omission effects of different magnitudes depend on basolateral complex and central nucleus of amygdala. Rats were trained on a fixed-interval 12 s with limited hold 6 s signaled schedule in which correct responses were always followed by one of two reinforcement magnitudes. Bilateral lesions of the basolateral complex and central nucleus were made after acquisition of stable performance. After postoperative recovery, the training was changed from 100% to 50% reinforcement schedules. The results showed that lesions of the basolateral complex and central nucleus did not eliminate or reduce, but interfere with reinforcement omission effects. The response from rats of both the basolateral complex and central nucleus lesioned group was higher relative to that of the rats of their respective sham-lesioned groups after reinforcement omission. Thus, the lesioned rats were more sensitive to the omission effect. Moreover, the basolateral complex lesions prevented the magnitude effect on reinforcement omission effects. Basolateral complex lesioned rats showed no differential performance following omission of larger and smaller reinforcement magnitude. Thus, the basolateral complex is involved in incentive processes relative to omission of different reinforcement magnitudes. Therefore, it is possible that reinforcement omission effects are modulated by brain circuitry which involves amygdala. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE The bed nucleus of the stria terminalis (BNST) is a limbic structure that is involved in the expression of conditioned contextual fear. Among the numerous neural inputs to the BNST, noradrenergic synaptic terminals are prominent and some evidence suggests an activation of this noradrenergic neurotransmission in the BNST during aversive situations. Here, we have investigated the involvement of the BNST noradrenergic system in the modulation of behavioural and autonomic responses induced by conditioned contextual fear in rats. EXPERIMENTAL APPROACH Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (6 footshocks, 1.5 ma/ 3 s). Twenty-four hours later freezing and autonomic responses (mean arterial pressure, heart rate and cutaneous temperature) to the conditioning box were measured for 10 min. The adrenoceptor antagonists were administered 10 min before the re-exposure to the aversive context. KEY RESULTS L-propranolol, a non-selective beta-adrenoceptor antagonist, and phentolamine, a non-selective a-adrenoceptor antagonist, reduced both freezing and autonomic responses induced by aversive context. Similar results were observed with CGP20712, a selective beta 1-adrenoceptor antagonist, and WB4101, a selective a1-antagonist, but not with ICI118,551, a selective beta 2-adrenoceptor antagonist or RX821002, a selective a2-antagonist. CONCLUSIONS AND IMPLICATIONS These findings support the idea that noradrenergic neurotransmission in the BNST via a1- and beta 1-adrenoceptors is involved in the expression of conditioned contextual fear.