2 resultados para PARAMETERS CALIBRATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride) (PVC) foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software Abaqus (TM) were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.
Resumo:
Current methods for quality control of sugar cane are performed in extracted juice using several methodologies, often requiring appreciable time and chemicals (eventually toxic), making the methods not green and expensive. The present study proposes the use of X-ray spectrometry together with chemometric methods as an innovative and alternative technique for determining sugar cane quality parameters, specifically sucrose concentration, POL, and fiber content. Measurements in stem, leaf, and juice were performed, and those applied directly in stem provided the best results. Prediction models for sugar cane stem determinations with a single 60 s irradiation using portable X-ray fluorescence equipment allows estimating the % sucrose, % fiber, and POL simultaneously. Average relative deviations in the prediction step of around 8% are acceptable if considering that field measurements were done. These results may indicate the best period to cut a particular crop as well as for evaluating the quality of sugar cane for the sugar and alcohol industries.