21 resultados para Oxidized LDL

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Metabolic predictors and the atherogenicity of oxidized LDL (oxLDL) and the specific antibodies against oxLDL (oxLDL Ab) are unclear and controversial. Methods: In 107 adults without atherosclerotic manifestations, we measured oxLDL and oxLDL Ab, and also the activities of CETP. PLTP, lipases and the carotid intima-media thickness (cIMT). Comparisons were performed for the studied parameters between the lowest and the highest tertile of oxLDL and oxLDL Ab, and the relationships between studied variables were evaluated. Results: Subjects with higher oxLDL Ab present reduced hepatic lipase activity and borderline increased cIMT. In the highest oxLDL tertile, besides the higher levels of total cholesterol, LDL-C and apoB100, we found reduced CETP activity and higher cIMT. A significant correlation between oxLDL Ab and cIMT, independent of oxLDL, and a borderline correlation between oxLDL and cIMT independent of oxLDL Ab were found. In the multivariate analysis, apoAl was a significant predictor of oxLDL Ab, in contrast to regulation of oxLDL by apoB100, PLTP and inverse of CETP. Conclusions: In adults without atherosclerotic disease, the metabolic regulation and carotid atherosclerosis of oxLDLAb and oxLDL groups, characterized a dual trait in oxLDL Ab, as a contributor to carotid atherosclerosis, much less so than oxidized LDL, and with a modest atheroprotective role. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxidative process of LDL particles generates molecules which are structurally similar to platelet-activating factor (PAF), and some effects of oxidized LDL (oxLDL) have been shown to be dependent on PAF receptor (PAFR) activation. In a previous study, we showed that PAFR is required for upregulation of CD36 and oxLDL uptake. In the present study we analyzed the molecular mechanisms activated by oxLDL in human macrophages and the contribution of PAFR to this response. Human adherent monocytes/macrophages were stimulated with oxLDL. Uptake of oxLDL and CD36 expression were determined by flow cytometry; MAP kinases and Akt phosphorylation by Western blot; IL-8 and MCP-1 concentration by ELISA and mRNA expression by real-time PCR. To investigate the participation of the PI3K/Akt pathway, G alpha i-coupled protein or PAFR, macrophages were treated with LY294002, pertussis toxin or with the PAFR antagonists WEB2170 and CV3988, respectively before addition of oxLDL. It was found that the addition of oxLDL to human monocytes/macrophages activates the PI3K/Akt pathway which in turn activates the MAPK (p38 and JNK). Phosphorylation of Akt requires the engagement of PAFR and a G alpha i-coupled protein. The upregulation of CD36 protein and the uptake of oxLDL as well as the IL-8 production are dependent on PI3K/Akt pathway activation. The increased CD36 protein expression is dependent on PAFR and G alpha i-coupled protein. Transfection studies using HEK 293t cells showed that oxLDL uptake occurs with either PAFR or CD36, but IL-8 production requires the co-transfection of both PAFR and CD36. These findings show that PAFR has a pivotal role in macrophages response to oxLDL and suggest that pharmacological intervention at the level of PAFR activation might be beneficial in atherosclerosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We compared the effects of medium light roast (MLR) and medium roast (MR) paper-filtered coffee on antioxidant capacity and lipid peroxidation in healthy volunteers. In a randomized crossover study, 20 volunteers consumed 482 +/- 61 ml/day of MLR or MR for four weeks. Plasma total antioxidant status (TAS), oxygen radical absorbance capacity (ORAC), oxidized LDL and 8-epi-prostaglandin F2 alpha, erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activity were measured at baseline and after the interventions. MLR had higher chlorogenic acids-(CGA; 334 mg/150 mL) and less caffeine (231 mg/150 ml) than MR had (210 and 244 mg/150 ml, respectively). MLR also had fewer Maillard reaction products (MRP) than MR had. Compared with baseline, subjects had an increase of 21 and 26 % in TAS, 13 and 13 % in CAT, 52 and 75 % in SOD, and 62 and 49 % in GPx after MLR and MR consumption (P < 0.001), respectively. ORAC increased after MLR (P = 0.004). No significant alteration in lipid peroxidation biomarkers was observed. Both coffees had antioxidant effects. Although MLR contained more CGA, there were similar antioxidant effects between the treatments. MRP may have contributed as an antioxidant. These effects may be important in protecting biological systems and reducing the risk of diseases related to oxidative stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metabolic disturbances are quite common in critically ill patients. Glycemic control appears to be an important adjuvant therapy in such patients. In addition, disorders of lipid metabolism are associated with worse prognoses. The purpose of this study was to investigate the effects that two different glycemic control protocols have on lipid profile and metabolism. We evaluated 63 patients hospitalized for severe sepsis or septic shock, over the first 72 h of intensive care. Patients were randomly allocated to receive conservative glycemic control (target range 140-180 mg/dl) or intensive glycemic control (target range 80-110 mg/dl). Serum levels of low-density lipoprotein, high-density lipoprotein, triglycerides, total cholesterol, free fatty acids, and oxidized low-density lipoprotein were determined. In both groups, serum levels of low-density lipoprotein, high-density lipoprotein, and total cholesterol were below normal, whereas those of free fatty acids, triglycerides, and oxidized low-density lipoprotein were above normal. At 4 h after admission, free fatty acid levels were higher in the conservative group than in the intensive group, progressively decreasing in both groups until hour 48 and continuing to decrease until hour 72 only in the intensive group. Oxidized low-density lipoprotein levels were elevated in both groups throughout the study period. Free fatty acids respond to intensive glycemic control and, because of their high toxicity, can be a therapeutic target in patients with sepsis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to investigate whether differences in diet and in single-nucleotide polymorphisms (SNPs) found in paraoxonase-1 (PON-1), 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), cholesterol ester transfer protein (CETP) and apolipoprotein E (APOE) genes, are associated with oxidative stress biomarkers and consequently with susceptibility of low-density cholesterol (LDL) to oxidation. A multivariate approach was applied to a group of 55 patients according to three biomarkers: plasma antioxidant activity, malondialdehyde and oxidized LDL (oxLDL) concentrations. Individuals classified in Cluster III showed the worst prognoses in terms of antioxidant activity and oxidative status. Individuals classified in Cluster I presented the lowest oxidative status, while individuals grouped in Cluster II presented the highest levels of antioxidant activity. No difference in nutrient intake was observed among the clusters. Significantly higher gamma- and delta-tocopherol concentrations were observed in those individuals with the highest levels of antioxidant activity. No single linear regression was statistically significant, suggesting that mutant alleles of the SNPs selected did not contribute to the differences observed in oxidative stress response. Although not statistically significant, the p value of the APO E coefficient for oxLDL response was 0.096, indicating that patients who carry the TT allele of the APO E gene tend to present lower plasma oxLDL concentrations. Therefore, the differences in oxidative stress levels observed in this study could not be attributed to diet or to the variant alleles of PON-1, CETP, HMGCR or APO E. This data supports the influence of gamma-tocopherol and delta-tocopherol on antioxidant activity, and highlights the need for further studies investigating APO E alleles and LDL oxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: In the setting of stable coronary artery disease (CAD), it is not known if the pleiotropic effects of cholesterol reduction differ between combined ezetimibe/simvastatin and high-dose simvastatin alone. Objective: We sought to compare the anti-inflammatory and antiplatelet effects of ezetimibe 10 mg/simvastatin 20 mg (E10/S20) with simvastatin 80 mg (S80). Methods and results: CAD patients (n = 83, 63 +/- 9 years, 57% men) receiving S20, were randomly allocated to receive E10/S20 or S80, for 6 weeks. Lipids, inflammatory markers (C-reactive protein, interleukin-6, monocyte chemoattractant protein-1, soluble CD40 ligand and oxidized LDL), and platelet aggregation (platelet function analyzer [PFA]-100) changes were determined. Baseline lipids, inflammatory markers and PFA-100 were similar between groups. After treatment, E10/S20 and S80 patients presented, respectively: (1) similar reduction in LDL-C (29 +/- 13% vs. 28 +/- 30%, p = 0.46), apo-B (18 +/- 17% vs. 22 +/- 15%, p = 0.22) and oxidized LDL (15 +/- 33% vs. 18 +/- 47%, p = 0.30); (2) no changes in inflammatory markers; and, (3) a higher increase of the PFA-100 with E10/S20 than with S80 (27 +/- 43% vs. 8 +/- 33%, p = 0.02). Conclusions: These data suggest that among stable CAD patients treated with S20, (1) both E10/S20 and S80 were equally effective in further reducing LDL-C; (2) neither treatment had any further significant anti-inflammatory effects; and (3) E10/S20 was more effective than S80 in inhibiting platelet aggregation. Thus, despite similar lipid lowering and doses 4x less of simvastatin, E10/S20 induced a greater platelet inhibitory effect than S80. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Advanced glycation end products (AGE) alter lipid metabolism and reduce the macrophage expression of ABCA-1 and ABCG-1 which impairs the reverse cholesterol transport, a system that drives cholesterol from arterial wall macrophages to the liver, allowing its excretion into the bile and feces. Oxysterols favors lipid homeostasis in macrophages and drive the reverse cholesterol transport, although the accumulation of 7-ketocholesterol, 7alpha- hydroxycholesterol and 7beta- hydroxycholesterol is related to atherogenesis and cell death. We evaluated the effect of glycolaldehyde treatment (GAD; oxoaldehyde that induces a fast formation of intracellular AGE) in macrophages overloaded with oxidized LDL and incubated with HDL alone or HDL plus LXR agonist (T0901317) in: 1) the intracellular content of oxysterols and total sterols and 2) the contents of ABCA-1 and ABCG-1. Methods Total cholesterol and oxysterol subspecies were determined by gas chromatography/mass spectrometry and HDL receptors content by immunoblot. Results In control macrophages (C), incubation with HDL or HDL + T0901317 reduced the intracellular content of total sterols (total cholesterol + oxysterols), cholesterol and 7-ketocholesterol, which was not observed in GAD macrophages. In all experimental conditions no changes were found in the intracellular content of other oxysterol subspecies comparing C and GAD macrophages. GAD macrophages presented a 45% reduction in ABCA-1 protein level as compared to C cells, even after the addition of HDL or HDL + T0901317. The content of ABCG-1 was 36.6% reduced in GAD macrophages in the presence of HDL as compared to C macrophages. Conclusion In macrophages overloaded with oxidized LDL, glycolaldehyde treatment reduces the HDL-mediated cholesterol and 7-ketocholesterol efflux which is ascribed to the reduction in ABCA-1 and ABCG-1 protein level. This may contribute to atherosclerosis in diabetes mellitus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We identified different lipemic and metabolic responses after the ingestion of a standardized meal by healthy adults and related them to atherosclerotic markers. Samples from 60 normolipidemic adults were collected before and after a liquid meal (40 g fat/m² body surface) at 0, 2, 4, 6, and 8 h for measurements of lipids, free fatty acids (FFA), insulin, cholesteryl ester transfer protein (CETP), autoantibodies to epitopes of oxidized LDL (oxLDL Ab), lipolytic activities, and apolipoprotein E polymorphism. Mean carotid intima-media thickness (cIMT) was determined by Doppler ultrasound. The volunteers were classified into early (N = 39) and late (N = 31) triacylglycerol (TAG) responders to the test meal. Late responders showed lower HDL cholesterol concentration at fasting and in the TAG peak, lower insulin and higher FFA concentrations compared to early responders. Multivariate regression analyses showed that mean cIMT was associated with gender (male) and age in early responders and by cholesterol levels at the 6th hour in late responders. oxLDL Ab were explained by lipoprotein lipase and negatively by hepatic lipase and oxLDL Ab (fasting period) by CETP (negative) and FFA (positive). This study is the first to identify a postalimentary insulin resistance state, combined with a reduced CETP response exclusively among late responders, and the identification of the regulators of postalimentary atherogenicity. Further research is required to determine the metabolic mechanisms described in the different postalimentary phenotypes observed in this study, as well as in different pathological states, as currently investigated in our laboratory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the previous literature and our recent work on first-principles studies of Cu3Au(100) and (111) surfaces, with focus on the segregation of atomic species to the surface at pristine conditions and in the presence of oxygen. In particular, the combined use of experimental and theoretical tools to achieve chemical identification at an atomic level of the surface species is emphasized and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Glucose intolerance is frequently associated with an altered plasma lipid profile and increased cardiovascular disease risk. Nonetheless, lipid metabolism is scarcely studied in normolipidemic glucose-intolerant patients. The aim of this study was to investigate whether important lipid metabolic parameters, such as the kinetics of LDL free and esterified cholesterol and the transfer of lipids to HDL, are altered in glucose-intolerant patients with normal plasma lipids. METHODS: Fourteen glucose-intolerant patients and 15 control patients were studied; none of the patients had cardiovascular disease manifestations, and they were paired for age, sex, race and co-morbidities. A nanoemulsion resembling a LDL lipid composition (LDE) labeled with C-14-cholesteryl ester and H-3-free cholesterol was intravenously injected, and blood samples were collected over a 24-h period to determine the fractional clearance rate of the labels by compartmental analysis. The transfer of free and esterified cholesterol, triglycerides and phospholipids from the LDE to HDL was measured by the incubation of the LDE with plasma and radioactivity counting of the supernatant after chemical precipitation of non-HDL fractions. RESULTS: The levels of LDL, non-HDL and HDL cholesterol, triglycerides, apo A1 and apo B were equal in both groups. The 14 C-esterified cholesterol fractional clearance rate was not different between glucose-intolerant and control patients, but the H-3-free- cholesterol fractional clearance rate was greater in glucose-intolerant patients than in control patients. The lipid transfer to HDL was equal in both groups. CONCLUSION: In these glucose-intolerant patients with normal plasma lipids, a faster removal of LDE free cholesterol was the only lipid metabolic alteration detected in our study. This finding suggests that the dissociation of free cholesterol from lipoprotein particles occurs in normolipidemic glucose intolerance and may participate in atherogenic signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although exercise increases HDL-cholesterol, exercise-induced changes in HDL metabolism have been little explored. Lipid transfer to HDL is essential for HDL's role in reverse cholesterol transport. We investigated the effects of acute exhaustive exercise on lipid transfer to HDL. We compared plasma lipid, apolipoprotein and cytokine levels and in vitro transfer of four lipids from a radioactively labeled lipid donor nanoemulsion to HDL in sedentary individuals (n = 28) and in marathon runners (n = 14) at baseline, immediately after and 72 h after a marathon. While HDL-cholesterol concentrations and apo A1 levels were higher in marathon runners, LDL-cholesterol, apo B and triacylglycerol levels were similar in both groups. Transfers of non-esterified cholesterol [6.8 (5.7-7.2) vs. 5.2 (4.5-6), p = 0.001], phospholipids [21.7 (20.4-22.2) vs. 8.2 (7.7-8.9), p = 0.0001] and triacylglycerol [3.7 (3.1-4) vs. 1.3 (0.8-1.7), p = 0.0001] were higher in marathon runners, but esterified-cholesterol transfer was similar. Immediately after the marathon, LDL- and HDL-cholesterol concentrations and apo A1 levels were unchanged, but apo B and triacylglycerol levels increased. Lipid transfer of non-esterified cholesterol [6.8 (5.7-7.2) vs. 5.8 (4.9-6.6), p = 0.0001], phospholipids [21.7 (20.4-22.2) vs. 19.1 (18.6-19.3), p = 0.0001], esterified-cholesterol [3.2 (2.2-3.8) vs. 2.3 (2-2.9), p = 0.02] and triacylglycerol [3.7 (3.1-4) vs. 2.6 (2.1-2.8), p = 0.0001] to HDL were all reduced immediately after the marathon but returned to baseline 72 h later. Running a marathon increased IL-6 and TNF-alpha levels, but after 72 h these values returned to baseline. Lipid transfer, except esterified-cholesterol transfer, was higher in marathon runners than in sedentary individuals, but the marathon itself acutely inhibited lipid transfer. In light of these novel observations, further study is required to clarify how these metabolic changes can influence HDL composition and anti-atherogenic function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting method to investigate the effect of fuel crossover in low temperature fuel cells consists of studying the open circuit interaction between the reducing fuel and an oxide-covered catalyst. Herein we report the experimental study of the open circuit interaction between borohydride and oxidized platinum surfaces in alkaline media. When compared to the case of hydrogen and other small organic molecules, two remarkable new features were observed. Firstly, the interaction with borohydride resulted in a very-fast reduction process with transient times about two to three orders of magnitude smaller. The second peculiarity was that the decrease of the open circuit potential was found to occur in two-stages and this, previously unseen, feature was correlated with the two-hump profile found in the backward sweep in the cyclic voltammogram The consequences of our findings are discussed in connection with fundamental and applied aspects. (C) 2011 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LDL oxidation and oxidative stress are closely related to atherosclerosis. Therefore, natural antioxidants have been studied as promising candidates. In the present study, the LDL oxidation inhibition activity of bioactive compounds from Halimeda incrassata seaweed. associated to antioxidant capacity, was evaluated in vitro. Experimental work was conducted with lyophilized aqueous extract and phenolic-rich fractions of the seaweed and their effect on LDL oxidation was evaluated using heparin-precipitated LDL (hep-LDL) with exposure to Cu2+ ions and AAPH as the free radical generator. H. incrassata had a protective effect for hep-LDL in both systems and the presence of phenolic compounds contributed to the activity where phenolic-rich fractions showed significant capacity for inhibition of oxidation mediated by Cu2+ ions. The observed effect could be related to the antioxidant potential of polar fractions evidenced by reducing activity and DPPH center dot radical scavenging. The results obtained in vitro further support the antioxidant and LDL oxidation inhibition properties of H. incrassata and further knowledge toward future phytotherapeutic application of the seaweed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Several parameters are associated with high bone mineral density (BMD), such as overweight, black background, intense physical activity (PA), greater calcium intake and some medications. The objectives are to evaluate the prevalence and the main aspects associated with high BMD in healthy women. Methods: After reviewing the database of approximately 21,500 BMD scans performed in the metropolitan area of Sao Paulo, Brazil, from June 2005 to October 2010, high BMD (over 1400 g/cm(2) at lumbar spine and/or above 1200 g/cm2 at femoral neck) was found in 421 exams. Exclusion criteria were age below 30 or above 60 years, black ethnicity, pregnant or obese women, disease and/or medications known to interfere with bone metabolism. A total of 40 women with high BMD were included and matched with 40 healthy women with normal BMD, paired to weight, age, skin color and menopausal status. Medical history, food intake and PA were assessed through validated questionnaires. Body composition was evaluated through a GE-Lunar DPX MD + bone densitometer. Radiography of the thoracic and lumbar spine was carried out to exclude degenerative alterations or fractures. Biochemical parameters included both lipid and hormonal profiles, along with mineral and bone metabolism. Statistical analysis included parametric and nonparametric tests and linear regression models. P < 0.05 was considered significant. Results: The mean age was 50.9 (8.3) years. There was no significant difference between groups in relation to PA, smoking, intake of calcium and vitamin D, as well as laboratory tests, except serum C-telopeptide of type I collagen (s-CTX), which was lower in the high BMD group (p = 0.04). In the final model of multivariate regression, a lower fat intake and body fatness as well a better profile of LDL-cholesterol predicted almost 35% of high BMD in women. (adjusted R2 = 0.347; p < 0.001). In addition, greater amounts of lean mass and higher IGF-1 serum concentrations played a protective role, regardless age and weight. Conclusion: Our results demonstrate the potential deleterious effect of lipid metabolism-related components, including fat intake and body fatness and worse lipid profile, on bone mass and metabolism in healthy women.