2 resultados para Oregon

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE. We previously demonstrated that most eyes have regionally variable extensions of Bruch's membrane (BM) inside the clinically identified disc margin (DM) that are clinically and photographically invisible. We studied the impact of these findings on DM- and BM opening (BMO)-derived neuroretinal rim parameters. METHODS. Disc stereo-photography and spectral domain optical coherence tomography (SD-OCT, 24 radial B-scans centered on the optic nerve head) were performed on 30 glaucoma patients and 10 age-matched controls. Photographs were colocalized to SD-OCT data such that the DM and BMO could be visualized in each B-scan. Three parameters were computed: (1) DM-horizontal rim width (HRW), the distance between the DM and internal limiting membrane (ILM) along the DM reference plane; (2) BMO-HRW, the distance between BMO and ILM along the BMO reference plane; and (3) BMO-minimum rim width (MRW), the minimum distance between BMO and ILM. Rank-order correlations of sectors ranked by rim width and spatial concordance measured as angular distances between equivalently ranked sectors were derived. RESULTS. The average DM position was external to BMO in all quadrants, except inferotemporally. There were significant sectoral differences among all three rim parameters. DM- HRW and BMO-HRW sector ranks were better correlated (median rho = 0.84) than DM- HRW and BMO-MRW (median rho = 0.55), or BMO-HRW and BMO-MRW (median rho = 0.60) ranks. Sectors with the narrowest BMO-MRW were infrequently the same as those with the narrowest DM-HRW or BMO-HRW. CONCLUSIONS. BMO-MRW quantifies the neuroretinal rim from a true anatomical outer border and accounts for its variable trajectory at the point of measurement. (Invest Ophthalmol Vis Sci. 2012;53:1852-1860) DOI:10.1167/iovs.11-9309

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800-ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species-richness estimates were significantly higher (F = 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30-50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30-50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30-50%). Highly sensitive species were 3-4 times more common above the 30-50% threshold than below it; however, our results do not support a unique fragmentation threshold.