4 resultados para Ordovician
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas.This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of 51 preserved as internal foliation within interkinematic staurolite por-phyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an 52 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The Nappe System shows a top-to-the S/SW sense direction of movement, and the PFSZ served as a right lateral ramp in the exhumation process. This structural pattern is indicative of an oblique collision, with the Cuyania Terrane subducting under the proto-Andean margin of Gondwana in the NE direction. This continental subduction and exhumation lasted at least 30 million years, nearly the entire Ordovician period, and produced metamorphic conditions of upper amphibolite-to-granulite facies in medium- to high-pressure regimes. At least two later events deformed the earlier structures: D4 and D5 deformational phases. The D4 deformational phase corresponds to upright folding, with wavelengths of approximately 10 km and a general N-S orientation. These folds modified the S2 surface in an approximately cylindrical manner and are associated with exposed, discrete shear zones in the Silurian Guandacolinos Granite. The cylindrical pattern and subhorizontal axis of the D4 folds indicates that the S2 surface was originally flat-lying. The D4 folds are responsible for preserving the basement unit Juchi Orthogneiss synformal klippen. This deformation corresponds to the Chanica Tectonic during the interval between the Devonian and Carboniferous periods. The D5 deformational phase comprehends cuspate-lobate shaped open plunging folds with E W high-angle axes (D5 folds) and sub-vertical spaced cleavage. The D5 folds and related spaced cleavage deformed the previous structures and could be associated with uplifting during the Andean Cycle. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We present field relationships, major and trace element geochemistry and U-Pb SHRIMP and ID-TIMS geochronology of the A-type Ordovician Quintas pluton located in the Ceara Central Domain of the Borborema Province, in northeastern Brazil. This pluton presents a concentric geometry and is composed mainly of syenogranite, monzogranite, quartz syenite to quartz monzodiorite, monzogabbro and diorite. Its geochemical characteristics [SiO2 (52-70%), Na2O/K2O (1.55-0.65), Fe2O3/MgO (2.2-7.3), metaluminous to sligthly alkaline affinity, post-collisional type in (Y + Nb) x Rb diagram, and A-type affinity (Ga > 22 ppm, Nb > 20 ppm, Zn > 60 ppm), REE fractioned pattern with negative Eu anomaly] are coherent with post-collisional A(2)-type granitoids. However, the emplacement of this pluton is to some extent temporally associated with the deposition of the first strata of the Parnaiba intracratonic basin, attesting also to a purely anorogenic character (A(1)-type granitoid). The emplacement of this pluton is preceded by one of the largest known orogenesis of the planet (Neoproterozoic Pan-African/Brasiliano) and, if it is classified as an A(2)-type granitoid, it provides interesting constraints about how long can last A(2)-type magmatic activity after a major collisional episode, arguably triggered by disturbance of the underlying mantle, a topic extensively debated in the geoscience community. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Neoproterozoic geologic and geotectonic processes were of utmost importance in forming and structuring the basement framework of the South-American platform. Two large domains with distinct evolutionary histories are identified with respect to the Neoproterozoic era: the northwest-west (Amazonian craton and surroundings) and the central-southeast (the extra-Amazonian domain). In the first domain, Neoproterozoic events occurred only locally and were of secondary significance, and the geologic events, processes, and structures of the pre-Neoproterozoic (and syn-Brasiliano) cratonic block were much more influential. In the second, the extra-Amazonian domain, the final evolution, structures and forms are assigned to events related to the development of a complex net of Neoproterozoic mobile belts. These in turn resulted in strong reworking of the older pre-Neoproterozoic basement. In this domain, four distinct structural provinces circumscribe or are separated by relatively small pre- Neoproterozoic cratonic nuclei, namely the Pampean, Tocantins, Borborema and Mantiqueira provinces. These extra-Amazonian provinces were formed by a complex framework of orogenic branching systems following a diversified post-Mesoproterozoic paleogeographic scenario. This scenario included many types of basement inliers as well as a diversified organization of accretionary and collisional orogens. The basement inliers date from the Archean toMesoproterozoic periods and are different in nature. The escape tectonics that operated during the final consolidation stages of the provinces were important to and responsible for the final forms currently observed. These latest events, which occurred from the Late Ediacaran to the Early Ordovician, present serious obstacles to paleogeographic reconstructions. Two groups of orogenic collage systems are identified. The older system from the Tonian (>850 Ma) period is of restricted occurrence and is not fully understood due to strong reworking subsequent to Tonian times. The second group of orogenies is more extensive and more important. Its development began with diachronic taphrogenic processes in the Early Cryogenian period (ca. 850e750 Ma) and preceded a complex scenario of continental, transitional and oceanic basins. Subsequent orogenies (post 800 Ma) were also created by diachronic processes that ended in the Early Ordovician. More than one orogeny (plate interaction) can be identified either in space or in time in every province. The orogenic processes were not necessarily synchronous in different parts of the orogenic system, even within the same province. This particular group of orogenic collage events is known as the “Brasiliano”. All of the structural provinces of the extra-Amazonian domain exhibit final events that are marked by extrusion processes, are represented by long lineaments, and are fundamental to unraveling the structural history of the Phanerozoic sedimentary basins.
Resumo:
The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms. conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conductive to mass extinctions. Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment: a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth atmosphere and ice ages; and the desctruction of Earth's ozone layer posed by supernova explosiosn. We present detailed calculations of the history of spiral arm passages for all 212 solar-type stars nearer than 20 parsecs, including the total time spent inside armsin the last 500 Myr, when the spiral arm position can be traced with good accuracy. We found that there is a large diversity of stellar orbits in the solar neighborhood, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 30% of its lifetime crossing the spiral arms, more than most nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass extinctions of the Earth's biosphere from the Late Ordovician to the Cretaceous-Tertiary.