2 resultados para Orange Order

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Citrus Variegated Chlorosis (CVC) is currently present in approximately 40% of citrus plants in Brazil and causes an annual loss of around 120 million US dollars to the Brazilian citrus industry. Despite the fact that CVC has been present in Brazil for over 20 years, a relationship between disease intensity and yield loss has not been established. In order to achieve this, an experiment was carried out in a randomized block design in a 3 x 2 factorial scheme with 10-year-old Natal sweet orange. The following treatments were applied: irrigation with 0, 50 or 100% of the evapotranspiration of the crop, combined with natural infection or artificial inoculation with Xylella fastidiosa, the causal agent of CVC. The experiment was evaluated during three seasons. A negative exponential model was fitted to the relationships between yield versus CVC severity and yield versus Area Under Disease Progress Curve (AUDPC). In addition, the relationship between yield versus CVC severity and canopy volume was fitted by a multivariate exponential model. The use of the AUDPC variable showed practical limitations when compared with the variable CVC severity. The parameter values in the relationship of yieldCVC severity were similar for all treatments unlike in the multivariate model. Consequently, the yieldCVC intensity relationship (with 432 data points) could be described by one single model: y = 114.07 exp(-0.017 x), where y is yield (symptomless fruit weight in kg) and x is disease severity (R2 = 0.45; P < 0.01).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvent effects on the one- and two-photon absorption (IPA and 2PA) of disperse orange 3 (DO3) in dimethyl sulfoxide (DMSO) are studied using a discrete polarizable embedding (PE) response theory. The scheme comprises a quantum region containing the chromophore and an atomically granulated classical region for the solvent accounting for full interactions within and between the two regions. Either classical molecular dynamics (MD) or hybrid Car-Parrinello (CP) quantum/classical (QM/MM) molecular dynamics simulations are employed to describe the solvation of DO3 in DMSO, allowing for an analysis of the effect of the intermolecular short-range repulsion, long-range attraction, and electrostatic interactions on the conformational changes of the chromophore and also the effect of the solute-solvent polarization. PE linear response calculations are performed to verify the character, solvatochromic shift, and overlap of the two lowest energy transitions responsible for the linear absorption spectrum of DO3 in DMSO in the visible spectral region. Results of the PE linear and quadratic response calculations, performed using uncorrelated solute-solvent configurations sampled from either the classical or hybrid CP QM/MM MD simulations, are used to estimate the width of the line shape function of the two electronic lowest energy excited states, which allow a prediction of the 2PA cross-sections without the use of empirical parameters. Appropriate exchange-correlation functionals have been employed in order to describe the charge-transfer process following the electronic transitions of the chromophore in solution.