3 resultados para Optimization procedures

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. Energy harvesting devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The design of energy harvesting devices is not obvious, requiring optimization procedures. This paper investigates the influence of pattern gradation using topology optimization on the design of piezocomposite energy harvesting devices based on bending behavior. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Examples of two-dimensional piezocomposite energy harvesting devices are presented and discussed using the proposed method. The numerical results illustrate that pattern gradation constraints help to increase the electric power generated in a load resistor and guides the problem toward a more stable solution. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trypanothione reductase has long been investigated as a promising target for chemotherapeutic intervention in Chagas disease, since it is an enzyme of a unique metabolic pathway that is exclusively present in the pathogen but not in the human host, which has the analog Glutathione reductase. In spite of the present data-set includes a small number of compounds, a combined use of flexible docking, pharmacophore perception, ligand binding site prediction, and Grid-Independent Descriptors GRIND2-based 3D-Quantitative Structure-Activity Relationships (QSAR) procedures allowed us to rationalize the different biological activities of a series of 11 aryl beta-aminocarbonyl derivatives, which are inhibitors of Trypanosoma cruzi trypanothione reductase (TcTR). Three QSAR models were built and validated using different alignments, which are based on docking with the TcTR crystal structure, pharmacophore, and molecular interaction fields. The high statistical significance of the models thus obtained assures the robustness of this second generation of GRIND descriptors here used, which were able to detect the most important residues of such enzyme for binding the aryl beta-aminocarbonyl derivatives, besides to rationalize distances among them. Finally, a revised binding mode has been proposed for our inhibitors and independently supported by the different methodologies here used, allowing further optimization of the lead compounds with such combined structure- and ligand-based approaches in the fight against the Chagas disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In deterministic optimization, the uncertainties of the structural system (i.e. dimension, model, material, loads, etc) are not explicitly taken into account. Hence, resulting optimal solutions may lead to reduced reliability levels. The objective of reliability based design optimization (RBDO) is to optimize structures guaranteeing that a minimum level of reliability, chosen a priori by the designer, is maintained. Since reliability analysis using the First Order Reliability Method (FORM) is an optimization procedure itself, RBDO (in its classical version) is a double-loop strategy: the reliability analysis (inner loop) and the structural optimization (outer loop). The coupling of these two loops leads to very high computational costs. To reduce the computational burden of RBDO based on FORM, several authors propose decoupling the structural optimization and the reliability analysis. These procedures may be divided in two groups: (i) serial single loop methods and (ii) unilevel methods. The basic idea of serial single loop methods is to decouple the two loops and solve them sequentially, until some convergence criterion is achieved. On the other hand, uni-level methods employ different strategies to obtain a single loop of optimization to solve the RBDO problem. This paper presents a review of such RBDO strategies. A comparison of the performance (computational cost) of the main strategies is presented for several variants of two benchmark problems from the literature and for a structure modeled using the finite element method.