18 resultados para Optimization methods

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper aims to provide an improved NSGA-II (Non-Dominated Sorting Genetic Algorithm-version II) which incorporates a parameter-free self-tuning approach by reinforcement learning technique, called Non-Dominated Sorting Genetic Algorithm Based on Reinforcement Learning (NSGA-RL). The proposed method is particularly compared with the classical NSGA-II when applied to a satellite coverage problem. Furthermore, not only the optimization results are compared with results obtained by other multiobjective optimization methods, but also guarantee the advantage of no time-spending and complex parameter tuning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present two new constraint qualifications (CQs) that are weaker than the recently introduced relaxed constant positive linear dependence (RCPLD) CQ. RCPLD is based on the assumption that many subsets of the gradients of the active constraints preserve positive linear dependence locally. A major open question was to identify the exact set of gradients whose properties had to be preserved locally and that would still work as a CQ. This is done in the first new CQ, which we call the constant rank of the subspace component (CRSC) CQ. This new CQ also preserves many of the good properties of RCPLD, such as local stability and the validity of an error bound. We also introduce an even weaker CQ, called the constant positive generator (CPG), which can replace RCPLD in the analysis of the global convergence of algorithms. We close this work by extending convergence results of algorithms belonging to all the main classes of nonlinear optimization methods: sequential quadratic programming, augmented Lagrangians, interior point algorithms, and inexact restoration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combining data from multiple analytical platforms is essential for comprehensive study of the molecular phenotype (metabotype) of a given biological sample. The metabolite profiles generated are intrinsically dependent on the analytical platforms, each requiring optimization of instrumental parameters, separation conditions, and sample extraction to deliver maximal biological information. An in-depth evaluation of extraction protocols for characterizing the metabolome of the hepatobiliary fluke Fasciola hepatica, using ultra performance liquid chromatography and capillary electrophoresis coupled with mass spectroscopy is presented. The spectrometric methods were characterized by performance, and metrics of merit were established, including precision, mass accuracy, selectivity, sensitivity, and platform stability. Although a core group of molecules was common to all methods, each platform contributed a unique set, whereby 142 metabolites out of 14,724 features were identified. A mixture design revealed that the chloroform:methanol:water proportion of 15:59:26 was globally the best composition for metabolite extraction across UPLC-MS and CE-MS platforms accommodating different columns and ionization modes. Despite the general assumption of the necessity of platform-adapted protocols for achieving effective metabotype characterization, we show that an appropriately designed single extraction procedure is able to fit the requirements of all technologies. This may constitute a paradigm shift in developing efficient protocols for high-throughput metabolite profiling with more-general analytical applicability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to perform a systematic study of the parameters that can influence the composition, morphology, and catalytic activity of PtSn/C nanoparticles and compare two different methods of nanocatalyst preparation, namely microwave-assisted heating (MW) and thermal decomposition of polymeric precursors (DPP). An investigation of the effects of the reducing and stabilizing agents on the catalytic activity and morphology of Pt75Sn25/C catalysts prepared by microwave-assisted heating was undertaken for optimization purposes. The effect of short-chain alcohols such as ethanol, ethylene glycol, and propylene glycol as reducing agents was evaluated, and the use of sodium acetate and citric acid as stabilizing agents for the MW procedure was examined. Catalysts obtained from propylene glycol displayed higher catalytic activity compared with catalysts prepared in ethylene glycol. Introduction of sodium acetate enhanced the catalytic activity, but this beneficial effect was observed until a critical acetate concentration was reached. Optimization of the MW synthesis allowed for the preparation of highly dispersed catalysts with average sizes lying between 2.0 and 5.0 nm. Comparison of the best catalyst prepared by MW with a catalyst of similar composition prepared by the polymeric precursors method showed that the catalytic activity of the material can be improved when a proper condition for catalyst preparation is achieved. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synchronous telecommunication networks, distributed control systems and integrated circuits have its accuracy of operation dependent on the existence of a reliable time basis signal extracted from the line data stream and acquirable to each node. In this sense, the existence of a sub-network (inside the main network) dedicated to the distribution of the clock signals is crucially important. There are different solutions for the architecture of the time distribution sub-network and choosing one of them depends on cost, precision, reliability and operational security. In this work we expose: (i) the possible time distribution networks and their usual topologies and arrangements. (ii) How parameters of the network nodes can affect the reachability and stability of the synchronous state of a network. (iii) Optimizations methods for synchronous networks which can provide low cost architectures with operational precision, reliability and security. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The single machine scheduling problem with a common due date and non-identical ready times for the jobs is examined in this work. Performance is measured by the minimization of the weighted sum of earliness and tardiness penalties of the jobs. Since this problem is NP-hard, the application of constructive heuristics that exploit specific characteristics of the problem to improve their performance is investigated. The proposed approaches are examined through a computational comparative study on a set of 280 benchmark test problems with up to 1000 jobs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, in practice, one might not be able to solve the subproblem up to the required precision. This may be due to different reasons. One of them is that the presence of an excessively large penalty parameter could impair the performance of the box-constraint optimization solver. In this paper a practical strategy for decreasing the penalty parameter in situations like the one mentioned above is proposed. More generally, the different decisions that may be taken when, in practice, one is not able to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved Augmented Lagrangian method is presented, which takes into account numerical difficulties in a satisfactory way, preserving suitable convergence theory. Numerical experiments are presented involving all the CUTEr collection test problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss the detection of glucose and triglycerides using information visualization methods to process impedance spectroscopy data. The sensing units contained either lipase or glucose oxidase immobilized in layer-by-layer (LbL) films deposited onto interdigitated electrodes. The optimization consisted in identifying which part of the electrical response and combination of sensing units yielded the best distinguishing ability. It is shown that complete separation can be obtained for a range of concentrations of glucose and triglyceride when the interactive document map (IDMAP) technique is used to project the data into a two-dimensional plot. Most importantly, the optimization procedure can be extended to other types of biosensors, thus increasing the versatility of analysis provided by tailored molecular architectures exploited with various detection principles. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented. One algorithm is based on the HLRF, but uses a new differentiable merit function with Wolfe conditions to select step length in linear search. It is shown in the article that, under certain assumptions, the proposed algorithm generates a sequence that converges to the local minimizer of the problem. Two new augmented Lagrangian methods are also presented, which use quadratic penalties to solve nonlinear problems with equality constraints. Performance and robustness of the new algorithms is compared to the classic augmented Lagrangian method, to HLRF and to the improved HLRF (iHLRF) algorithms, in the solution of 25 benchmark problems from the literature. The new proposed HLRF algorithm is shown to be more robust than HLRF or iHLRF, and as efficient as the iHLRF algorithm. The two augmented Lagrangian methods proposed herein are shown to be more robust and more efficient than the classical augmented Lagrangian method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current scientific applications have been producing large amounts of data. The processing, handling and analysis of such data require large-scale computing infrastructures such as clusters and grids. In this area, studies aim at improving the performance of data-intensive applications by optimizing data accesses. In order to achieve this goal, distributed storage systems have been considering techniques of data replication, migration, distribution, and access parallelism. However, the main drawback of those studies is that they do not take into account application behavior to perform data access optimization. This limitation motivated this paper which applies strategies to support the online prediction of application behavior in order to optimize data access operations on distributed systems, without requiring any information on past executions. In order to accomplish such a goal, this approach organizes application behaviors as time series and, then, analyzes and classifies those series according to their properties. By knowing properties, the approach selects modeling techniques to represent series and perform predictions, which are, later on, used to optimize data access operations. This new approach was implemented and evaluated using the OptorSim simulator, sponsored by the LHC-CERN project and widely employed by the scientific community. Experiments confirm this new approach reduces application execution time in about 50 percent, specially when handling large amounts of data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrothermomechanical MEMS are essentially microactuators that operate based on the thermoelastic effect induced by the Joule heating of the structure. They can be easily fabricated and require relatively low excitation voltages. However, the actuation time of an electrothermomechanical microdevice is higher than the actuation times related to electrostatic and piezoelectric actuation principles. Thus, in this research, we propose an optimization framework based on the topology optimization method applied to transient problems, to design electrothermomechanical microactuators for response time reduction. The objective is to maximize the integral of the output displacement of the actuator, which is a function of time. The finite element equations that govern the time response of the actuators are provided. Furthermore, the Solid Isotropic Material with Penalization model and Sequential Linear Programming are employed. Finally, a smoothing filter is implemented to control the solution. Results aiming at two distinct applications suggest the proposed approach can provide more than 50% faster actuators. (C) 2012 Elsevier B.V. All rights reserved.