3 resultados para Optical instruments.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Two recently developed instruments, the Laser Optical Plankton Counter (LOPC) and the Zooscan, have been applied to study zooplankton biomass size spectra in tropical and subtropical marine ecosystems off Brazil. Both technologies rely on optical measurements of particles and may potentially be used in zooplankton monitoring programs. Vertical profiles of the LOPC installed in a 200 mu m ring net have been obtained from diverse environmental settings ranging from turbid and nearshore waters to oligotrophic open ocean conditions. Net samples were analyzed on the Zooscan and counted under a microscope. Particle biovolume in the study area estimated with the LOPC correlated with plankton displacement volume from the net samples, but there was no significant relationship between total areal zooplankton biomass determined with LOPC and the Zooscan. Apparently, normalized biomass size spectra (NBSS) of LOPC and Zooscan overlapped for particles in the size range of 500 to 1500 mu m in equivalent spherical diameter (ESD), especially at open ocean stations. However, the distribution of particles into five size classes was statistically different between both instruments at 24 of 28 stations. The disparities arise from unequal flow estimates, from different sampling efficiencies of LOPC tunnel and net for large and small particles, and possibly from the interference of non-zooplankton material in the LOPC signal. Ecosystem properties and technical differences therefore limit the direct comparability of the NBSS slopes obtained with both instruments during this study, and their results should be regarded as complementary.
Resumo:
Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4748519]
Resumo:
Several studies on polythiophene gas sensors, based mainly on electrochemical and gravimetric principles can be found in the literature. However, other principles of gas detection, such as optical and thermal, are still little studied. Optical sensing is suitable for remote detection and offers great versatility at low cost. Here,we report on the use of thin films of seven polythiophene derivatives as active layer in optical sensors for the detection of six volatile organic compounds (n-hexane, toluene, tetrahydrofuran, chloroform, dichloromethane and methanol) and water vapor, in concentration range of 500-30,000 ppm. The results showed that it is possible to use different polythiophene derivatives to differentiate VOCs by optical sensing. Differentiation can be performed based on the presence or not of response to an analyte and the sensitivity value of the sensors for the analytes. Another important feature is the lack of the effect of humidity on the response of most films, which could be a major drawback in the application of these sensors. (C) 2011 Elsevier B.V. All rights reserved.