10 resultados para Optical frequency combs

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we analyze the problem of light-matter interaction when absorptive resonances are imbedded in the material dispersion. We apply an improved approach to aluminum (Al) in the optical frequency range to investigate the impact of these resonances on the operating characteristics of Al-based nanoscale devices. Quantities such as group velocity, stored energy density, and energy velocity, normally obtained using a single resonance model [Wave Propagation and Group Velocity (Academic Press, 1960), Nat. Mater. 11, 208 (2012)], are now accurately calculated regardless of the medium adopted. We adapt the Loudon approach [Nat. Mater. 11, 208 (2012)] to media with several optical resonances and present the details of the extended model. We also show pertinent results for Al-based metal-dielectric-metal (MDM) waveguides, around spectral resonances. The model delineated here can be applied readily to any metal accurately characterized by Drude-Lorentz spectral resonance features. (C) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With Hg-199 atoms confined in an optical lattice trap in the Lamb-Dicke regime, we obtain a spectral line at 265.6 nm for which the FWHM is similar to 15 Hz. Here we lock an ultrastable laser to this ultranarrow S-1(0) - P-3(0) clock transition and achieve a fractional frequency instability of 5.4 x 10(-15) / root tau for tau <= 400 s. The highly stable laser light used for the atom probing is derived from a 1062.6 nm fiber laser locked to an ultrastable optical cavity that exhibits a mean drift rate of -6.0 x 10(-17) s-(1) (-16.9 mHzs(-1) at 282 THz) over a six month period. A comparison between two such lasers locked to independent optical cavities shows a flicker noise limited fractional frequency instability of 4 x 10(-16) per cavity. (c) 2012 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semiempirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frequency upconversion (UC) properties of Tm3+ doped TeO2-ZnO glasses containing silver nanoparticles (NPs) were investigated. Infrared-to-visible and infrared-to-infrared UC processes associated to the Tm3+ ions were studied by exciting the samples with a cw 1050 nm ytterbium laser. The luminescence intensity as a function of laser intensity was also measured using a pulsed 1047 nm Nd3+:YVO laser in order to determine the number of photons participating in the UC processes. Enhancement of the UC signals for samples heat-treated during various time intervals is attributed to the growth of the local field in the vicinity of the NPs. PL enhancement by one-order of magnitude was observed in the whole spectrum of the samples heat-treated during 48 h. On the other hand PL quenching was observed for the samples heat-treated more than 48 h. (c) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, barium zirconate (BaZrO3) ceramics synthesized by solid state reaction method and sintered at 1670 degrees C for 4 h were characterized by X-ray diffraction (XRD), Rietveld refinement, and Fourier transform infrared (FT-IR) spectroscopy. XRD patterns, Rietveld refinement data and FT-IR spectra which confirmed that BaZrO3 ceramics have a perovskite-type cubic structure. Optical properties were investigated by ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) measurements. UV-vis absorption spectra suggested an indirect allowed transition with the existence of intermediary energy levels within the band gap. Intense visible green PL emission was observed in BaZrO3 ceramics upon excitation with a 350 nm wavelength. This behavior is due to a majority of deep defects within the band gap caused by symmetry breaking in octahedral [ZrO6] clusters in the lattice. The microwave dielectric constant and quality factor were measured using the method proposed by Hakki-Coleman. The dielectric resonator antenna (DRA) was investigated experimentally and numerically using a monopole antenna through an infinite ground plane and Ansoft's high frequency structure simulator software, respectively. The required resonance frequency and bandwidth of DRA were investigated by adjusting the dimension of the same material. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We experimentally revisit a technique of low-cost multiparameter monitor for optical performance monitoring based on low frequency polarization modulation. A simplified calibration procedure, which significantly reduces the mathematical complexity and processing effort is proposed. Validation is achieved by carrying out relative optical power, wavelength, and differential group delay measurements. (C) 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:18201824, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26956

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we have applied sub-Doppler laser cooling to a K-39 magneto-optical trap in order to load a 1071 nm crossed optical dipole trap. The number of atoms loaded into the dipole trap was characterized as a function of the frequency and intensity of the cooling and repump laser beams. For the optimum conditions, the dipole trap has about 2 x 10(6) atoms at an atomic density of 2 x 10(12) cm(-3), with a temperature of about 10 mu K. This technique is a very simple procedure to load a K-39 optical dipole trap without a previous magnetic evaporative cooling step and may find application in other atomic physic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To characterize optic nerve head (ONH) anatomy related to the clinical optic disc margin with spectral domain-optical coherence tomography (SD-OCT). Design: Cross-sectional study. Participants: Patients with open-angle glaucoma with focal, diffuse, and sclerotic optic disc damage, and age-matched normal controls. Methods: High-resolution radial SD-OCT B-scans centered on the ONH were analyzed at each clock hour. For each scan, the border tissue of Elschnig was classified for obliqueness (internally oblique, externally oblique, or nonoblique) and the presence of Bruch's membrane overhanging the border tissue. Optic disc stereophotographs were co-localized to SD-OCT data with customized software. The frequency with which the disc margin identified in stereophotographs coincided with (1) Bruch's membrane opening (BMO), defined as the innermost edge of Bruch's membrane; (2) Bruch's membrane/border tissue, defined as any aspect of either outside BMO or border tissue; or (3) border tissue, defined as any aspect of border tissue alone, in the B-scans was computed at each clock hour. Main Outcome Measures: The SD-OCT structures coinciding with the disc margin in stereophotographs. Results: There were 30 patients (10 with each type of disc damage) and 10 controls, with a median (range) age of 68.1 (42-86) years and 63.5 (42-77) years, respectively. Although 28 patients (93%) had 2 or more border tissue configurations, the most predominant one was internally oblique, primarily superiorly and nasally, frequently with Bruch's membrane overhang. Externally oblique border tissue was less frequent, observed mostly inferiorly and temporally. In controls, there was predominantly internally oblique configuration around the disc. Although the configurations were not statistically different between patients and controls, they were among the 3 glaucoma groups. At most locations, the SD-OCT structure most frequently identified as the disc margin was some aspect of Bruch's membrane and border tissue external to BMO. Bruch's membrane overhang was regionally present in the majority of patients with glaucoma and controls; however, in most cases it was not visible as the disc margin. Conclusions: The clinically perceived disc margin is most likely not the innermost edge of Bruch's membrane detected by SD-OCT. These findings have important implications for the automated detection of the disc margin and estimates of the neuroretinal rim. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2012;119:738-747 (C) 2012 by the American Academy of Ophthalmology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]