7 resultados para Opinion retrieval, mining and summarization framework
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Given a large image set, in which very few images have labels, how to guess labels for the remaining majority? How to spot images that need brand new labels different from the predefined ones? How to summarize these data to route the user’s attention to what really matters? Here we answer all these questions. Specifically, we propose QuMinS, a fast, scalable solution to two problems: (i) Low-labor labeling (LLL) – given an image set, very few images have labels, find the most appropriate labels for the rest; and (ii) Mining and attention routing – in the same setting, find clusters, the top-'N IND.O' outlier images, and the 'N IND.R' images that best represent the data. Experiments on satellite images spanning up to 2.25 GB show that, contrasting to the state-of-the-art labeling techniques, QuMinS scales linearly on the data size, being up to 40 times faster than top competitors (GCap), still achieving better or equal accuracy, it spots images that potentially require unpredicted labels, and it works even with tiny initial label sets, i.e., nearly five examples. We also report a case study of our method’s practical usage to show that QuMinS is a viable tool for automatic coffee crop detection from remote sensing images.
Resumo:
Serra da Canastra National Park (SCNP) is one of the most important protected areas in the Cerrado biome. Despite its importance to the conservation of rare and endangered species like Brazilian Merganser, two bills were approved in 2010 by Brazil's Chamber of Deputies aiming to reduce SCNP's official boundaries and to transform some of its parts into an Environmental Protection Area (EPA). We evaluated whether such changes would facilitate mining areas to be legally exploited within the park's area, and if those mining areas would represent a threat to Brazilian Merganser populations at SCNP. Results showed that 55% of the mining areas currently within the National Park will be located within the new EPA, and six hydrographic micro-basins inhabited by Brazilian Merganser could be affected by environmental impacts caused by mineral exploitation in those areas. For these reasons, we recommend the two bills be refused at the Federal Senate.
Resumo:
The aim of this paper is to present some reflections on possibilities to investigate everyday life by examining ways of life, so as to broaden perspectives to the field of research in public health, in light of the fact that the study of daily ways of life involves the analysis of trajectories that contextualize routines, interactions and meanings of life. This allows the social researcher in the health field to have, based on a theoretical framework, a flexible methodology that offers mobility in the choice of the technique that best favors the understanding of the issue to be investigated. We have here, as a conceptual reference, the idea of everyday life investigated from interactive processes and contexts, as opposed to a categorial objectification between subject and object. In this context, from the theoretical reflection, we take, as the research's empirical reference, the waiting room of the outpatient clinic of the Osteoarticular Metabolism Department of a Health Care Unit in the city of Fortaleza/, Northeastern Brazil, in order to foster an interpretive understanding of the daily routine that involves the life and health situations of women with osteoporosis.
Resumo:
The use of cover crops affects the support capacity of soil and least limiting water range to crop growth. The objective of this study was to quantify preconsolidation pressure (sigma(p)), compression index (CI) and least limiting water range (LLWR) of a reclaimed coal mining soil under different cover crops, in Candiota, RS, Brazil. In the experiment, with randomized blocks design and four replicates, the following cover crops (treatments) were evaluated: Hemarthria altissima (Poir.) Stapf & C.E. Hubbard, treatment 1 (T1), Paspalum notatum Flugge, treatment 4 (T4), Cynodon dactilon (L) Pers., treatment 5 (T5), control Brachiaria brizantha (Hochst.) Stapf, treatment 7 (T7) and without cover crop treatment 8 (reference treatment, T8). Soil compression and least limiting water range were evaluated with undisturbed samples at a depth of 0.00-0.05 m. In order to evaluate parameters of soil compressibility, the soil samples were saturated with water and subjected to -10 kPa matric potential and then submitted to a uniaxial compression test under the following pressures: 25, 50, 100, 200, 400, 800 and 1600 kPa. Cover crops decreased the preconsolidation pressure of constructed soils after coal mining and the greatest soil reclamation was obtained with the H. altissima cover crop, where the lowest degree of soil compactness and soil load capacity were observed. Soils cultivated under H. altissima or B. brizantha presented the highest least limiting water range and these two cover crops generated similar soil critical bulk density obtained by least limiting water range and soil load support capacity. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background The use of the knowledge produced by sciences to promote human health is the main goal of translational medicine. To make it feasible we need computational methods to handle the large amount of information that arises from bench to bedside and to deal with its heterogeneity. A computational challenge that must be faced is to promote the integration of clinical, socio-demographic and biological data. In this effort, ontologies play an essential role as a powerful artifact for knowledge representation. Chado is a modular ontology-oriented database model that gained popularity due to its robustness and flexibility as a generic platform to store biological data; however it lacks supporting representation of clinical and socio-demographic information. Results We have implemented an extension of Chado – the Clinical Module - to allow the representation of this kind of information. Our approach consists of a framework for data integration through the use of a common reference ontology. The design of this framework has four levels: data level, to store the data; semantic level, to integrate and standardize the data by the use of ontologies; application level, to manage clinical databases, ontologies and data integration process; and web interface level, to allow interaction between the user and the system. The clinical module was built based on the Entity-Attribute-Value (EAV) model. We also proposed a methodology to migrate data from legacy clinical databases to the integrative framework. A Chado instance was initialized using a relational database management system. The Clinical Module was implemented and the framework was loaded using data from a factual clinical research database. Clinical and demographic data as well as biomaterial data were obtained from patients with tumors of head and neck. We implemented the IPTrans tool that is a complete environment for data migration, which comprises: the construction of a model to describe the legacy clinical data, based on an ontology; the Extraction, Transformation and Load (ETL) process to extract the data from the source clinical database and load it in the Clinical Module of Chado; the development of a web tool and a Bridge Layer to adapt the web tool to Chado, as well as other applications. Conclusions Open-source computational solutions currently available for translational science does not have a model to represent biomolecular information and also are not integrated with the existing bioinformatics tools. On the other hand, existing genomic data models do not represent clinical patient data. A framework was developed to support translational research by integrating biomolecular information coming from different “omics” technologies with patient’s clinical and socio-demographic data. This framework should present some features: flexibility, compression and robustness. The experiments accomplished from a use case demonstrated that the proposed system meets requirements of flexibility and robustness, leading to the desired integration. The Clinical Module can be accessed in http://dcm.ffclrp.usp.br/caib/pg=iptrans webcite.
Resumo:
Premise of the study: A set of eight microsatellite (simple sequence repeat [SSR]) markers for Lippia alba, an important medicinal and cosmetic plant, was developed to aid studies of genetic diversity and to define efficient strategies for breeding programs. Methods and Results: Using a (CT)(8)- and (GT)(8)-enriched library, a total of 11 SSR loci were developed and optimized in L. alba. Of the 11 loci, eight were found to be polymorphic after screening 61 accessions from two populations. The parameters used to characterize loci were expected heterozygosity (H-e) and number of alleles. A total of 44 alleles were identified, with an average of 5.5 alleles per loci, which were moderately to highly informative according to H-e. Conclusions: These new SSR markers have potential for informing genetic diversity, allele mining, and mapping studies and will be used to generate information for breeding programs of L. alba
Resumo:
Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease’s etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.