4 resultados para Oleaginous shale
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The main objective of the present work was to study nutritive strategies for lessening the CH4 formation associated to ruminant tropical diets. In vitro gas production technique was used for evaluating the effect of tannin-rich plants, essential oils, and biodiesel co-products on CH4 formation in three individual studies and a small chamber system to measure CH4 released by sheep for in vivo studies was developed. Microbial rumen population diversity from in vitro assays was studied using qPCR. In vitro studies with tanniniferous plants, herbal plant essential oils derived from thyme, fennel, ginger, black seed, and Eucalyptus oil (EuO) added to the basal diet and cakes of oleaginous plants (cotton, palm, castor plant, turnip, and lupine), which were included in the basal diet to replace soybean meal, presented significant differences regarding fermentation gas production and CH4 formation. In vivo assays were performed according to the results of the in vitro assays. , when supplemented to a basal diet (Tifton-85 hay sp, corn grain, soybean meal, cotton seed meal, and mineral mixture) fed to adult Santa Ines sheep reduced enteric CH4 emission but the supplementation of the basal diet with EuO did not affect ( > 0.05) methane released. Regarding the microbial studies of rumen population diversity using qPCR with DNA samples collected from the in vitro trials, the results showed shifts in microbial communities of the tannin-rich plants in relation to control plant. This research demonstrated that tannin-rich , essential oil from eucalyptus, and biodiesel co-products either in vitro or in vivo assays showed potential to mitigate CH4 emission in ruminants. The microbial community study suggested that the reduction in CH4 production may be attributed to a decrease in fermentable substrate rather than to a direct effect on methanogenesis.
Resumo:
Whole-rock geochemistry, combined with Sr-Nd isotopic composition of pelitic sedimentary rocks, have been considered to be useful parameters to estimate not only their provenance but also to make inferences about their depositional environment as well as the weathering processes they have been through. The basal sedimentary units of the basins of the northeastern Brazilian continental margin, particularly those of the pre-rift sequence, have been subject of interest of studies based on chemical and isotopic data, since they lack fossil content to establish their age and, therefore, stratigraphic correlations are difficult. The major and trace element contents as well as Sr-Nd isotopic compositions of whole-rock shale samples from five outcrops attributed to the pre-rift supersequence of the Camamu Basin were analyzed with the purpose of characterizing and obtaining further information that would allow a better correlation between the sites studied. The geochemical data suggest that the rocks exposed in the studied outcrops are part of the same sedimentary unit and that they might be correlated to the Capianga Member of the Alianca Formation of the Reconcavo Basin, exposed to the north of the Camamu Basin. The chemical index of alteration (CIA) suggests conditions associated with a humid tropical/subtropical climate at the time of deposition. Nd isotopic compositions indicate provenance from the Paleoproterozoic rocks of the Sao Francisco craton. The results presented here, therefore, show that the combined use of chemical and isotopic analyses may be of great interest to characterize and correlate lithologically homogeneous clastic sedimentary sequences. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Early diagenetic chert, infrequently exploited in Phanerozoic micropaleontology, was examined for organic-walled microfossils in petrographic thin sections of silicified dolostones from diverse levels and localities of the Assistencia Formation (Permian, Parana Basin) in the state of Sao Paulo, Brazil. In contrast to previous palynological studies of this formation, the use of thin sections allowed direct observation in three dimensions of common palynomorphs, as well as benthic microbial mats preserved in situ in various stages of their life cycles and degradation. As in palynological residues from the more wellknown shale of this formation, the chert contains wind-dispersed pollen grains and phytoclasts derived from terrestrial sources and planktonic cryptarchs (unornamented coccoidal unicellular or colonial palynomorphs). However, only in the chert is it possible to see much more delicate microfossils, such as abundant cyanobacteria of the in situ benthic microbiota as well as chlorophycean microalgae of the microphytoplankton. Post-depositional processes affecting the formation have destroyed all but the most resistant organic remains in the other lithologies, such that only rare, degraded pollen grains are seen in the unsilicified dolostone of the formation, and in the shale the vast majority of microfossils have been compacted to flattened disks. On the other hand, early silicification not only preserved organic remains at an incipient stage of decomposition but also impeded significant further degradation due to compaction, recrystallization, and oxidation. Thus, the petrographic study of such chert can complement traditional palynological investigations in Phanerozoic rocks by furnishing hitherto unavailable information, especially with regard to benthic organic microfossils and fragile organic-walled phytoplankton normally absent from organic residues. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this study, Canoparmelia texana lichenized fungi species was used as a passive biomonitor of the atmospheric pollution from the industrial city of So Mateus do Sul, PR, Brazil. Lichen samples collected from tree barks were cleaned, freeze-dried and analyzed by neutron activation analysis. Comparisons were made between the element concentrations obtained in lichens from this city and that from a clean area of Atlantic Forest in Intervales Park, SP. The high concentrations of elements As, Ca, Co, Cr, Fe, Hf, Sb, and Th found in lichens could be attributed to the emissions from a ceramic and an oil shale plants.