3 resultados para Ohara
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Understanding alternative splicing is crucial to elucidate the mechanisms behind several biological phenomena, including diseases. The huge amount of expressed sequences available nowadays represents an opportunity and a challenge to catalog and display alternative splicing events (ASEs). Although several groups have faced this challenge with relative success, we still lack a computational tool that uses a simple and straightforward method to retrieve, name and present ASEs. Here we present SPLOOCE, a portal for the analysis of human splicing variants. SPLOOCE uses a method based on regular expressions for retrieval of ASEs. We propose a simple syntax that is able to capture the complexity of ASEs.
Resumo:
Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) and other cyclic nitroxides have been shown to inhibit the chlorinating activity of myeloperoxidase (MPO) in vitro and in cells. To examine whether nitroxides inhibit MPO activity in vivo we selected acute carrageenan-induced inflammation on the rat paw as a model. Tempol and three more hydrophobic 4-substituted derivatives (4-azido, 4-benzene-Sulfonyl, and 4-(4-phenyl-1H-1,2,3-triazol-1-yl)) were synthesized, and their ability to inhibit the in vitro chlorinating activity of MPO and carrageenan-induced inflammation in rat paws was evaluated. All of the tested nitroxides inhibited the chlorinating activity of MPO in vitro with similar IC50 values (between 1.5 and 1.8 mu M). In vivo, the attenuation of carrageenan-induced inflammation showed some correlation with the lipophilicity of the nitroxide at early time points but the differences in the effects were small (< 2-fold) compared with the differences in lipophilicity (> 200-fold). No inhibition of MPO activity in vivo was evident because the levels of MPO activity in rat paws correlated with the levels of MPO protein'. Likewise, paw edema, levels of nitrated and oxidized proteins, and levels of plasma exudation correlated with the levels of MPO protein in the paws of the animals that were untreated or treated with the nitroxides. The effects of the nitroxides in vivo were compared with those of 4-aminobenzoic hydrazide and of colchicine. Taken together, the results indicate that nitroxides attenuate carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting MPO-mediated damage. Accordingly, tempol was shown to inhibit rat neutrophil migration in vitro. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The proteasome is a multimeric and multicatalytic intracellular protease responsible for the degradation of proteins involved in cell cycle control, various signaling processes, antigen presentation, and control of protein synthesis. The central catalytic complex of the proteasome is called the 20S core particle. The majority of these are flanked on one or both sides by regulatory units. Most common among these units is the 19S regulatory unit. When coupled to the 19S unit, the complex is termed the asymmetric or symmetric 26S proteasome depending on whether one or both sides are coupled to the 19S unit, respectively. The 26S proteasome recognizes poly-ubiquitinylated substrates targeted for proteolysis. Targeted proteins interact with the 19S unit where they are deubiquitinylated, unfolded, and translocated to the 20S catalytic chamber for degradation. The 26S proteasome is responsible for the degradation of major proteins involved in the regulation of the cellular cycle, antigen presentation and control of protein synthesis. Alternatively, the proteasome is also active when dissociated from regulatory units. This free pool of 20S proteasome is described in yeast to mammalian cells. The free 20S proteasome degrades proteins by a process independent of poly-ubiquitinylation and ATP consumption. Oxidatively modified proteins and other substrates are degraded in this manner. The 20S proteasome comprises two central heptamers (β-rings) where the catalytic sites are located and two external heptamers (α-rings) that are responsible for proteasomal gating. Because the 20S proteasome lacks regulatory units, it is unclear what mechanisms regulate the gating of α-rings between open and closed forms. In the present review, we discuss 20S proteasomal gating modulation through a redox mechanism, namely, S-glutathionylation of cysteine residues located in the α-rings, and the consequence of this post-translational modification on 20S proteasomal function.