4 resultados para Ocean bottom

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine Weddell Sea deep water mass distributions with respect to the results from three different model runs using the oceanic component of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM). One run is inter-annually forced by corrected NCAR/NCEP fluxes, while the other two are forced with the annual cycle obtained from the same climatology. One of the latter runs includes an interactive sea-ice model. Optimum Multiparameter analysis is applied to separate the deep water masses in the Greenwich Meridian section (into the Weddell Sea only) to measure the degree of realism obtained in the simulations. First, we describe the distribution of the simulated deep water masses using observed water type indices. Since the observed indices do not provide an acceptable representation of the Weddell Sea deep water masses as expected, they are specifically adjusted for each simulation. Differences among the water masses` representations in the three simulations are quantified through their root-mean-square differences. Results point out the need for better representation (and inclusion) of ice-related processes in order to improve the oceanic characteristics and variability of dense Southern Ocean water masses in the outputs of the NCAR-CCSM model, and probably in other ocean and climate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium carbonate production by marine organisms is an essential process in the global budget of CO32-, and coralline reefs are the most important benthic carbonate producers. Crustose coralline algae (CCA) are well recognized as the most important carbonate builders in the tropical Brazilian continental shelf, forming structural reefs and extensive rhodolith beds. However, the distribution of CCA beds, as well as their role in CO32- mineralization in mesophotic communities and isolated carbonate banks, is still poorly known. To characterize the bottom features of several seamount summits in the Southwestern Atlantic (SWA), side-scan sonar records, remotely operated vehicle imagery, and benthic samples with mixed-gas scuba diving were acquired during two recent research cruises (March 2009 and February 2011). The tops of several seamounts within this region are relatively shallow (similar to 60 m), flat, and dominated by rhodolith beds (Vitoria, Almirante Saldanha, Davis, and Jaseur seamounts, as well as the Trindade Island shelf). On the basis of abundance, dimensions, vitality, and growth rates of CCA nodules, a mean CaCO3 production was estimated, ranging from 0.4 to 1.8 kg m(-2) y(-1) with a total production reaching 1.5 x 10(-3) Gt y(-1). Our results indicate that these SWA seamount summits provide extensive areas of shallow reef area and represent 0.3% of the world's carbonate banks. The importance of this habitat has been highly neglected, and immediate management needs must be fulfilled in the short term to ensure long-term persistence of the ecosystem services provided by these offshore carbonate realms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paleoclimate version of the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR-CCSM3) is used to analyze changes in the water formation rates in the Atlantic, Pacific, and Indian Oceans for the Last Glacial Maximum (LGM), mid-Holocene (MH) and pre-industrial (PI) control climate. During the MH, CCSM3 exhibits a north-south asymmetric response of intermediate water subduction changes in the Atlantic Ocean, with a reduction of 2 Sv in the North Atlantic and an increase of 2 Sv in the South Atlantic relative to PI. During the LGM, there is increased formation of intermediate water and a more stagnant deep ocean in the North Pacific. The production of North Atlantic Deep Water (NADW) is significantly weakened. The NADW is replaced in large extent by enhanced Antarctic Intermediate Water (AAIW), Glacial North Atlantic Intermediate Water (GNAIW), and also by an intensified of Antarctic Bottom Water (AABW), with the latter being a response to the enhanced salinity and ice formation around Antarctica. Most of the LGM intermediate/mode water is formed at 27.4 < sigma(theta) < 29.0 kg/m(3), while for the MH and PI most of the subduction transport occurs at 26.5 < sigma(theta) < 27.4 kg/m(3). The simulated LGM Southern Hemisphere winds are more intense by 0.2-0.4 dyne/cm(2). Consequently, increased Ekman transport drives the production of intermediate water (low salinity) at a larger rate and at higher densities when compared to the other climatic periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new Community Climate System Model, version 4 (CCSM4), provides a powerful tool to understand and predict the earth's climate system. Several aspects of the Southern Ocean in the CCSM4 are explored, including the surface climatology and interannual variability, simulation of key climate water masses (Antarctic Bottom Water, Subantarctic Mode Water, and Antarctic Intermediate Water), the transport and structure of the Antarctic Circumpolar Current, and interbasin exchange via the Agulhas and Tasman leakages and at the Brazil-Malvinas Confluence. It is found that the CCSM4 has varying degrees of accuracy in the simulation of the climate of the Southern Ocean when compared with observations. This study has identified aspects of the model that warrant further analysis that will result in a more comprehensive understanding of ocean-atmosphere-ice dynamics and interactions that control the earth's climate and its variability.