16 resultados para Objective function values
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective: To determine the prevalence of exercise-induced bronchoconstriction among elite long-distance runners in Brazil and whether there is a difference in the training loads among athletes with and without exercise-induced bronchoconstriction. Methods: This was a cross-sectional study involving elite long-distance runners with neither current asthma symptoms nor a diagnosis of exercise-induced bronchoconstriction. All of the participants underwent eucapnic voluntary hyperpnea challenge and maximal cardiopulmonary exercise tests, as well as completing questionnaires regarding asthma symptoms and physical activity, in order to monitor their weekly training load. Results: Among the 86 male athletes recruited, participation in the study was agreed to by 20, of whom 5 (25%) were subsequently diagnosed with exercise-induced bronchoconstriction. There were no differences between the athletes with and without exercise-induced bronchoconstriction regarding anthropometric characteristics, peak oxygen consumption, baseline pulmonary function values, or reported asthma symptoms. The weekly training load was significantly lower among those with exercise-induced bronchoconstriction than among those without. Conclusions: In this sample of long-distance runners in Brazil, the prevalence of exercise-induced bronchoconstriction was high.
Resumo:
The study proposes a constrained least square (CLS) pre-distortion scheme for multiple-input single-output (MISO) multiple access ultra-wideband (UWB) systems. In such a scheme, a simple objective function is defined, which can be efficiently solved by a gradient-based algorithm. For the performance evaluation, scenarios CM1 and CM3 of the IEEE 802.15.3a channel model are considered. Results show that the CLS algorithm has a fast convergence and a good trade-off between intersymbol interference (ISI) and multiple access interference (MAI) reduction and signal-to-noise ratio (SNR) preservation, performing better than time-reversal (TR) pre-distortion.
Resumo:
Electrical impedance tomography (EIT) is an imaging technique that attempts to reconstruct the impedance distribution inside an object from the impedance between electrodes placed on the object surface. The EIT reconstruction problem can be approached as a nonlinear nonconvex optimization problem in which one tries to maximize the matching between a simulated impedance problem and the observed data. This nonlinear optimization problem is often ill-posed, and not very suited to methods that evaluate derivatives of the objective function. It may be approached by simulated annealing (SA), but at a large computational cost due to the expensive evaluation process of the objective function, which involves a full simulation of the impedance problem at each iteration. A variation of SA is proposed in which the objective function is evaluated only partially, while ensuring boundaries on the behavior of the modified algorithm.
Resumo:
Piezoelectric materials can be used to convert oscillatory mechanical energy into electrical energy. Energy harvesting devices are designed to capture the ambient energy surrounding the electronics and convert it into usable electrical energy. The design of energy harvesting devices is not obvious, requiring optimization procedures. This paper investigates the influence of pattern gradation using topology optimization on the design of piezocomposite energy harvesting devices based on bending behavior. The objective function consists of maximizing the electric power generated in a load resistor. A projection scheme is employed to compute the element densities from design variables and control the length scale of the material density. Examples of two-dimensional piezocomposite energy harvesting devices are presented and discussed using the proposed method. The numerical results illustrate that pattern gradation constraints help to increase the electric power generated in a load resistor and guides the problem toward a more stable solution. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a structural damage detection methodology based on genetic algorithms and dynamic parameters. Three chromosomes are used to codify an individual in the population. The first and second chromosomes locate and quantify damage, respectively. The third permits the self-adaptation of the genetic parameters. The natural frequencies and mode shapes are used to formulate the objective function. A numerical analysis was performed for several truss structures under different damage scenarios. The results have shown that the methodology can reliably identify damage scenarios using noisy measurements and that it results in only a few misidentified elements. (C) 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a technique for performing analog design synthesis at circuit level providing feedback to the designer through the exploration of the Pareto frontier. A modified simulated annealing which is able to perform crossover with past anchor points when a local minimum is found which is used as the optimization algorithm on the initial synthesis procedure. After all specifications are met, the algorithm searches for the extreme points of the Pareto frontier in order to obtain a non-exhaustive exploration of the Pareto front. Finally, multi-objective particle swarm optimization is used to spread the results and to find a more accurate frontier. Piecewise linear functions are used as single-objective cost functions to produce a smooth and equal convergence of all measurements to the desired specifications during the composition of the aggregate objective function. To verify the presented technique two circuits were designed, which are: a Miller amplifier with 96 dB Voltage gain, 15.48 MHz unity gain frequency, slew rate of 19.2 V/mu s with a current supply of 385.15 mu A, and a complementary folded cascode with 104.25 dB Voltage gain, 18.15 MHz of unity gain frequency and a slew rate of 13.370 MV/mu s. These circuits were synthesized using a 0.35 mu m technology. The results show that the method provides a fast approach for good solutions using the modified SA and further good Pareto front exploration through its connection to the particle swarm optimization algorithm.
The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
Resumo:
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
Resumo:
In this study is presented an economic optimization method to design telescope irrigation laterals (multidiameter) with regular spaced outlets. The proposed analytical hydraulic solution was validated by means of a pipeline composed of three different diameters. The minimum acquisition cost of the telescope pipeline was determined by an ideal arrangement of lengths and respective diameters for each one of the three segments. The mathematical optimization method based on the Lagrange multipliers provides a strategy for finding the maximum or minimum of a function subject to certain constraints. In this case, the objective function describes the acquisition cost of pipes, and the constraints are determined from hydraulic parameters as length of irrigation laterals and total head loss permitted. The developed analytical solution provides the ideal combination of each pipe segment length and respective diameter, resulting in a decreased of the acquisition cost.
Resumo:
This paper proposes two new approaches for the sensitivity analysis of multiobjective design optimization problems whose performance functions are highly susceptible to small variations in the design variables and/or design environment parameters. In both methods, the less sensitive design alternatives are preferred over others during the multiobjective optimization process. While taking the first approach, the designer chooses the design variable and/or parameter that causes uncertainties. The designer then associates a robustness index with each design alternative and adds each index as an objective function in the optimization problem. For the second approach, the designer must know, a priori, the interval of variation in the design variables or in the design environment parameters, because the designer will be accepting the interval of variation in the objective functions. The second method does not require any law of probability distribution of uncontrollable variations. Finally, the authors give two illustrative examples to highlight the contributions of the paper.
Resumo:
OBJECTIVE: The values of bone mineral density (BMD) were compared in postmenopausal women with and without breast cancer. METHODS: A cross-sectional study was conducted, including 51 breast cancer survivors (BCS) and 71 women without breast cancer, who were non-users of hormone therapy, tamoxifen, or aromatase inhibitors. BMD T-scores and measurements in grams per centimeter squared (g/cm²) were obtained at the femoral neck, trochanter, Ward's triangle, and lumbar spine. Osteopenia and osteoporosis were grouped and categorized as abnormal BMD. Unconditional logistic regression analysis was used to estimate the odds ratios (OR) of abnormal BMD values as measures of association, with 95% confidence intervals (CIs), adjusting for age, years since menopause, parity, and body mass index (BMI). RESULTS: The mean age of the women with and without breast cancer was 54.7 ± 5.8 years and 58.2 ± 4.8 years (p < 0.01), respectively. After adjusting for age, parity and BMI, abnormal BMD at the femoral neck (adjusted OR: 4.8; 95% CI: 1.5-15.4), trochanter (adjusted OR: 4.6; 95% CI: 1.4-15.5), and Ward's triangle (adjusted OR: 4.5; 95% CI: 1.5-12.9) were significantly more frequent in postmenopausal BCS than in women without breast cancer. Postmenopausal BCS had a significantly lower mean BMD at the trochanter (0.719 vs. 0.809 g/cm², p < 0.01) and at the Ward's triangle (0.751 vs. 0.805 g/cm², p = 0.03). CONCLUSION: The prevalence of abnormal BMD was higher in postmenopausal BCS than in postmenopausal women without breast cancer. Bone health requires special vigilance and the adoption of interventions should be instituted early to minimize bone loss in BCS.
Resumo:
This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.
Resumo:
Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.
Resumo:
Objective: - To develop and test a practical clinical method to assess frailty in nursing homes; - To investigate the relationship between cognitive status of the elderly and the balance between water compartments of their body composition. Design and subjects: Cross-sectional study, conducted at two nursing homes in Boston-MA. Methods: Body mass and height (Ht) were evaluated to calculate BMI (body mass index, in Kg/m(2)). The cognitive decline was evaluated based on the scores obtained from the Mini-Mental State Examination (MMSE); The extracellular to total body water ratio (ECW/TBW) was calculated after the analysis of TBW from deuterium and tritium dilution and ECW from bromide dilution. Single-frequency BIA analysis data were investigated for resistance (R) and reactance (Xc), plotted in an R/Ht Xc/Ht graph (vectorial analysis-BIVA). The BIVA results of nursing home residents were compared against the data obtained from the NHANES Ill study. TBW and ECW values were compared with a group of free-living elderly volunteers. Results: The ECW/TBW was significantly higher in nursing home residents than in the free-living individuals. BIVA analysis showed significantly higher Xc/Ht values in the reference subjects. The MMSE did not present a significant correlation with ECW/TBW for either gender. Conclusion: We proposed the ECW/TBW ratio and BIVA as surrogate methods for the clinical assessment of frailty. We tested successfully both approaches with nursing home patients and free-living volunteers and compared them to a national data base. The advent of new, portable instruments will enable field tests to further validate our proposed "Frailty Factor" in future studies. We found no correlation between frailty and cognitive decline in the nursing home.
Resumo:
Background Studies have suggested that asthma in obese individuals differs from the classic asthma phenotype, presenting as a disease that is more difficult to control. Objective The objective of the present study was to determine whether obesity, age or a combination of the two are associated with worse spirometry parameters in patients with asthma. Methods This was an observational cross-sectional study involving patients over 18 years of age who had been diagnosed with asthma (allergic or nonallergic). We evaluated the results of their spirometric tests. The patients were classified in accordance with two criteria: body mass index (BMI) and age. Based on their BMIs, the patients were divided into three groups: normal weight, overweight and obese. Patients were also separated into two categories by age: 18-59 years of age; and >= 60 years of age. Results We evaluated 451 patients with asthma and their spirometry tests. In the present study, the pulmonary function parameters were negatively correlated with BMI and age (P < 0.05). We found that there was a statistically significant correlation between spirometric values and BMI among patients 18-59 years of age (P < 0.001), however, among patients over 60, we did not observe this negative association. Conclusions and Clinical Relevance The spirometric values decreased significantly in proportion to the increase of BMI and age in patients with asthma, especially among young adults. There was no negative correlation between BMI and FEV1 in the group >= 60 years of age, suggesting that perhaps the time of disease is a major factor in the loss of lung function than weight gain in the elderly.