6 resultados para OCHRACEUS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The xylanase biosynthesis is induced by its substrate-xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and beta-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Tannases are enzymes that may be used in different industrial sectors as, for example, food and pharmaceutical. They are obtained mainly from microorganisms, as filamentous fungi. However, the diversity of fungi stays poorly explored for tannase production. In this article, Aspergillus ochraceus is presented as a new source of tannase with interesting features for biotechnological applications. Results: Extracellular tannase production was induced when the fungus was cultured in Khanna medium with tannic acid as carbon source. The extracellular tannase was purified 9-fold with 2% recovery and a single band corresponding to 85 kDa was observed in SDS-PAGE. The native apparent molecular mass was estimated as 112 kDa. Optima of temperature and pH were 40 degrees C and 5.0, respectively. The enzyme was fully stable from 40 degrees C to 60 degrees C during 1 hr. The activity was enhanced by Mn2+ (33-39%) and NH4+ (15%). The purified tannase hydrolyzed tannic acid and methyl gallate with Km of 0.76 mM and 0.72 mM, respectively, and Vmax of 0.92 U/mg protein and 0.68 U/mg protein, respectively. The analysis of a partial sequence of the tannase encoding gene showed an open read frame of 567 bp and a sequence of 199 amino acids were predicted. TLC analysis revealed the presence of gallic acid as a tannic acid hydrolysis product. Conclusion: The extracellular tannase produced by A. ochraceus showed distinctive characteristics such as monomeric structure and activation by Mn2+, suggesting a new kind of fungal tannases with biotechnological potential. Further, it was the first time that a partial gene sequence for A. ochraceus tannase was described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In silico comparison of 34 putative pks genes in Aspergillus niger strain CBS 513.88 versus A. niger strain ATCC 1015 genome revealed significant nucleotide identity (>95% covering a minimum of 99% of the gene sequence) for 31 of these genes (approximately 91%). A. niger CBS 513.88 harbors three putative pks genes (An01g01130, An11g05940, and An15g07920), for which nucleotide identity was not found in A. niger ATCC 1015. To compare the results of the in silico analysis with the in vivo situation, experimental data were obtained for a large number of A. niger strains obtained from different substrates and geographical regions. Three putative Os genes that were found to be variable between the two A. niger strains using bioinformatics tools were in fact strain-specific genes based on experimental data. The PCR amplification signals for the An01g01130, An11g05940, and An15g07920 pks genes were detected in only 97%, 71%, and 26% of the strains, respectively. Southern blot analyses confirmed the PCR data. Because one of the strain-specific pits genes (An15g07920) is located in a putative ochratoxin cluster, we focused our investigation on that region. We assessed the ochratoxin production capability of the 119 A. niger strains and found a positive association between the presence of this pia gene and the capability of the respective strain to produce ochratoxin. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The schistosomicidal effects of pimaradienoic acid (PA) and two derivatives, obtained by fungal transformation in the presence of Aspergillus ochraceus, were investigated. PA was the only compound with antischistosomal activity among the three diterpenes studied, with the ability to significantly reduce the viability of the parasites at concentrations ranging from 25 to 100 mu M. PA also promoted morphological alterations of the tegument of Schistosoma mansoni, separated all the worm couples, and affected the production and development of eggs. Moreover, this compound was devoid of toxicity toward human fibroblasts. In a preliminary in vivo experiment, PA at a dose of 100 mg/kg significantly diminished the number of parasites in infected Balb/c mice. Taken together, these results show that PA may be potentially employed in the discovery of novel schistosomicidal agents, and that diterpenes are an important class of natural compounds for the investigation of agents capable of fighting the parasite responsible for human schistosomiasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular beta-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. beta-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 A degrees C and 3.0-5.5, respectively. beta-xylosidase was stable in acidic pH (3.0-6.0) and 70 A degrees C for 1 h. The enzyme was activated by 5 mM MnCl2 (28 %) and MgCl2 (20 %) salts. The beta-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-beta-d-xylopyranoside, exhibiting apparent K-m and V-max values of 0.66 mM and 39 U (mg protein)(-1) respectively, and to a lesser extent p-nitrophenyl-beta-d-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources, suggesting a novel beta-d-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by beta-xylosidase. TLC confirmed the capacity of the enzyme in hydrolyzing xylan and larger xylo-oligosaccharides, as xylopentaose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agroindustrial residues are materials often rich in cellulose and hemicellulose. The use of these substrates for the microbial production of enzymes of industrial interest is mainly due to their high availability associated with their low cost. In this work, corncob (CCs) particles decomposed to soluble compounds (liquor) were incorporated in the microbial growth medium through autohydrolysis, as a strategy to increase and undervalue xylanase and beta-xylosidase production by Aspergillus terricola and Aspergillus ochraceus. The CCs autohydrolysis liquor produced at 200 A degrees C for 5, 15, 30 or 50 min was used as the sole carbon source or associated with untreated CC. The best condition for enzyme synthesis was observed with CCs submitted to 30 min of autohydrolysis. The enzymatic production with untreated CCs plus CC liquor was higher than with birchwood xylan for both microorganisms. A. terricola produced 750 total U of xylanase (144 h cultivation) and 30 total U of beta-xylosidase (96-168 h) with 0.75% untreated CCs and 6% CCs liquor, against 650 total U of xylanase and 2 total U of beta-xylosidase in xylan; A. ochraceus produced 605 total U of xylanase and 56 total U of beta-xylosidase (168 h cultivation) with 1% untreated CCs and 10% CCs liquor against 400 total U of xylanase and 38 total U of beta-xylosidase in xylan. These results indicate that the treatment of agroindustrial wastes through autohydrolysis can be a viable strategy in the production of high levels of xylanolytic enzymes.