27 resultados para Numerical Analysis and Scientific Computing
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The reduction of friction and wear in systems presenting metal-to-metal contacts, as in several mechanical components, represents a traditional challenge in tribology. In this context, this work presents a computational study based on the linear Archard's wear law and finite element modeling (FEM), in order to analyze unlubricated sliding wear observed in typical pin on disc tests. Such modeling was developed using finite element software Abaqus® with 3-D deformable geometries and elastic–plastic material behavior for the contact surfaces. Archard's wear model was implemented into a FORTRAN user subroutine (UMESHMOTION) in order to describe sliding wear. Modeling of debris and oxide formation mechanisms was taken into account by the use of a global wear coefficient obtained from experimental measurements. Such implementation considers an incremental computation for surface wear based on the nodal displacements by means of adaptive mesh tools that rearrange local nodal positions. In this way, the worn track was obtained and new surface profile is integrated for mass loss assessments. This work also presents experimental pin on disc tests with AISI 4140 pins on rotating AISI H13 discs with normal loads of 10, 35, 70 and 140 N, which represent, respectively, mild, transition and severe wear regimes, at sliding speed of 0.1 m/s. Numerical and experimental results were compared in terms of wear rate and friction coefficient. Furthermore, in the numerical simulation the stress field distribution and changes in the surface profile across the worn track of the disc were analyzed. The applied numerical formulation has shown to be more appropriate to predict mild wear regime than severe regime, especially due to the shorter running-in period observed in lower loads that characterizes this kind of regime.
Resumo:
In this work, different methods to estimate the value of thin film residual stresses using instrumented indentation data were analyzed. This study considered procedures proposed in the literature, as well as a modification on one of these methods and a new approach based on the effect of residual stress on the value of hardness calculated via the Oliver and Pharr method. The analysis of these methods was centered on an axisymmetric two-dimensional finite element model, which was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. Simulations were conducted varying the level of film residual stress, film strain hardening exponent, film yield strength, and film Poisson's ratio. Different ratios of maximum penetration depth h(max) over film thickness t were also considered, including h/t = 0.04, for which the contribution of the substrate in the mechanical response of the system is not significant. Residual stresses were then calculated following the procedures mentioned above and compared with the values used as input in the numerical simulations. In general, results indicate the difference that each method provides with respect to the input values depends on the conditions studied. The method by Suresh and Giannakopoulos consistently overestimated the values when stresses were compressive. The method provided by Wang et al. has shown less dependence on h/t than the others.
Resumo:
In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni-Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young's modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young's modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Considering that the process of teacher training in universities takes into account the confrontation of knowledge produced by the scientific methods, the current study intended to identify what are the main contributions of the Brazilian scientific production of Physical Education teaching. Therefore, an exploratory study was done from the articles published on the subject in the two main periodicals of the area. The data analyzes allowed us to verify the relevancy of the knowledge produced and to suggest alternatives to its inclusion in the docent training programs.
Resumo:
In this work, we probe the stability of a z = 3 three-dimensional Lifshitz black hole by using scalar and spinorial perturbations. We found an analytical expression for the quasinormal frequencies of the scalar probe field, which perfectly agree with the behavior of the quasinormal modes obtained numerically. The results for the numerical analysis of the spinorial perturbations reinforce the conclusion of the scalar analysis, i.e., the model is stable under scalar and spinor perturbations. As an application we found the area spectrum of the Lifshitz black hole, which turns out to be equally spaced.
Resumo:
Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the de- termination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the k –ω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle’s autopilot system.
Resumo:
Each plasma physics laboratory has a proprietary scheme to control and data acquisition system. Usually, it is different from one laboratory to another. It means that each laboratory has its own way to control the experiment and retrieving data from the database. Fusion research relies to a great extent on international collaboration and this private system makes it difficult to follow the work remotely. The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The choice of MDSplus (Model Driven System plus) is proved by the fact that it is widely utilized, and the scientists from different institutions may use the same system in different experiments in different tokamaks without the need to know how each system treats its acquisition system and data analysis. Another important point is the fact that the MDSplus has a library system that allows communication between different types of language (JAVA, Fortran, C, C++, Python) and programs such as MATLAB, IDL, OCTAVE. In the case of tokamak TCABR interfaces (object of this paper) between the system already in use and MDSplus were developed, instead of using the MDSplus at all stages, from the control, and data acquisition to the data analysis. This was done in the way to preserve a complex system already in operation and otherwise it would take a long time to migrate. This implementation also allows add new components using the MDSplus fully at all stages. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objectives. To verify the hypothesis that crack analysis and a mechanical test would rank a series of composites in a similar order with respect to polymerization stress. Also, both tests would show similar relationships between stress and composite elastic modulus and/or shrinkage. Methods. Soda-lime glass discs (2-mm thick) with a central perforation (3.5-mm diameter) received four Vickers indentations 500 mu m from the cavity margin. The indent cracks were measured (500x) prior and 10 min after the cavity was restored with one of six materials (Kalore/KL, Gradia/GR, Ice/IC, Wave/WV, Majesty Flow/MF, and Majesty Posterior/MP). Stresses at the indent site were calculated based on glass fracture toughness and increase in crack length. Stress at the bonded interface was calculated using the equation for an internally pressurized cylinder. The mechanical test used a universal testing machine and glass rods (5-mm diameter) as substrate. An extensometer monitored specimen height (2 mm). Nominal stress was calculated dividing the maximum shrinkage force by the specimen cross-sectional area. Composite elastic modulus was determined by nanoindentation and post-gel shrinkage was measured using strain gages. Data were subjected to one-way ANOVA/Tukey or Kruskal-Wallis/Mann-Whitney tests (alpha: 5%). Results. Both tests grouped the composites in three statistical subsets, with small differences in overlapping between the intermediate subset (MF, WV) and the highest (MP, IC) or the lowest stress materials (KL, GR). Higher stresses were developed by composites with high modulus and/or high shrinkage. Significance. Crack analysis demonstrated to be as effective as the mechanical test to rank composites regarding polymerization stress. (c) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Previously, we reported that nucleophosmin (NPM) was increased in glioblastoma multiforme (GBM). NPM is a phosphoprotein related to apoptosis, ribosome biogenesis, mitosis, and DNA repair, but details about its function remain unclear. We treated U87MG and A172 cells with small interference RNA (siRNA) and obtained a reduction of 80% in NPM1 expression. Knockdown at the protein level was evident after the 4th day and was maintained until the 7th day of transfection that was investigated by quantitative proteomic analysis using isobaric tags. The comparison of proteomic analysis of NPM1-siRNA against controls allowed the identification of 14 proteins, two proteins showed increase and 12 presented a reduction of expression levels. Gene ontology assigned most of the hypoexpressed proteins to apoptosis regulation, including GRP78. NPM1 silencing did not impair cell proliferation until the 7th day after transfection, but sensitized U87MG cells to temozolomide (TMZ), culminating with an increase in cell death and provoking at a later period a reduction of colony formation. In a large data set of GBM patients, both GRP78 and NPM1 genes were upregulated and presented a tendency to shorter overall survival time. In conclusion, NPM proved to participate in the apoptotic process, sensitizing TMZ-treated U87MG and A172 cells to cell death, and in association with upregulation of GRP78 may be helpful as a predictive factor of poor prognosis in GBM patients.
Resumo:
The presence of setae or a sensorial structure on the dactylus of pereopod 1 as one of the defining features of the family Kalliapseudidae is re-evaluated. A new genus, Postispinatus, including the new species P. youngi n. gen., n. sp., is described and thought to belong to the Kalliapseudidae based on phylogenetic analysis. The diagnostic features of new genus-and species by monotypy -are: basal article of uropod with two curved spiniform processes; exopods on the fourth and fifth pereopods of the manca stage; absence of a maxillule palp.
Resumo:
Introduction: Ovarian adenocarcinoma is frequently detected at the late stage, when therapy efficacy is limited and death occurs in up to 50% of the cases. A potential novel treatment for this disease is a monoclonal antibody that recognizes phosphate transporter sodium-dependent phosphate transporter protein 2b (NaPi2b). Materials and Methods: To better understand the expression of this protein in different histologic types of ovarian carcinomas, we immunostained 50 tumor samples with anti-NaPi2b monoclonal antibody MX35 and, in parallel, we assessed the expression of the gene encoding NaPi2b (SCL34A2) by in silico analysis of microarray data. Results: Both approaches detected higher expression of NaPi2b (SCL34A2) in ovarian carcinoma than in normal tissue. Moreover, a comprehensive analysis indicates that SCL34A2 is the only gene of the several phosphate transporters genes whose expression differentiates normal from carcinoma samples, suggesting it might exert a major role in ovarian carcinomas. Immunohistochemical and mRNA expression data have also shown that 2 histologic subtypes of ovarian carcinoma express particularly high levels of NaPi2b: serous and clear cell adenocarcinomas. Serous adenocarcinomas are the most frequent, contrasting with clear cell carcinomas, rare, and with worse prognosis. Conclusion: This identification of subgroups of patients expressing NaPi2b may be important in selecting cohorts who most likely should be included in future clinical trials, as a recently generated humanized version of MX35 has been developed.
Resumo:
Objective: In chronic renal failure patients under hemodialysis (HD) treatment, the availability of simple, safe, and effective tools to assess body composition enables evaluation of body composition accurately, in spite of changes in body fluids that occur in dialysis therapy, thus contributing to planning and monitoring of nutritional treatment. We evaluated the performance of bioelectrical impedance analysis (BIA) and the skinfold thickness sum (SKF) to assess fat mass (FM) in chronic renal failure patients before (BHD) and after (AHD) HD, using air displacement plethysmography (ADP) as the standard method. Design: This single-center cross-sectional trial involved comparing the FM of 60 HD patients estimated BHD and AHD by BIA (multifrequential; 29 women, 31 men) and by SKF with those estimated by the reference method, ADP. Body fat-free mass (FFM) was also obtained by subtracting the total body fat from the individual total weight. Results: Mean estimated FM (kg [%]) observed by ADP BHD was 17.95 +/- 0.99 kg (30.11% +/- 1.30%), with a 95% confidence interval (CI) of 16.00 to 19.90 (27.56 to 32.66); mean estimated FM observed AHD was 17.92 +/- 1.11 kg (30.04% +/- 1.40%), with a 95% CI of 15.74 to 20.10 (27.28 to 32.79). Neither study period showed a difference in FM and FFM (for both kg and %) estimates by the SKF method when compared with ADP; however, the BIA underestimated the FM and overestimated the FFM (for both kg and %) when compared with ADP. Conclusion: The SKF, but not the BIA, method showed results similar to ADP and can be considered adequate for FM evaluation in HD patients. (C) 2012 by the National Kidney Foundation, Inc. All rights reserved.
Resumo:
Objective The aim of the present study was to determine the impedance of Wistar rats treated with high-fat and high-sucrose diets and correlate their biochemical and anthropometric parameters with chemical analysis of the carcass. Methods Twenty-four male Wistar rats were fed a standard (AIN-93), high-fat (50% fat) or high-sucrose (59% of sucrose) diet for 4 weeks. Abdominal and thoracic circumference and body length were measured. Bioelectrical impedance analysis was used to determine resistance and reactance. Final body composition was determined by chemical analysis. Results Higher fat intake led to a high percentage of liver fat and cholesterol and low total body water in the High-Fat group, but these changes in the biochemical profile were not reflected by the anthropometric measurements or bioelectrical impedance analysis variables. Anthropometric and bioelectrical impedance analysis changes were not observed in the High-Sucrose group. However, a positive association was found between body fat and three anthropometric variables: body mass index, Lee index and abdominal circumference. Conclusion Bioelectrical impedance analysis did not prove to be sensitive for detecting changes in body composition, but body mass index, Lee index and abdominal circumference can be used for estimating the body composition of rats.
Resumo:
The ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [C4C1C1C1N][Tf2N], is a glass-forming liquid that exhibits partial crystallization depending on the cooling rate. Differential scanning calorimetry (DSC) indicates crystallization at T-c = 227 K, melting at T-m = 258 K, glass transition at T-g similar to 191 K, and also cold crystallization at T-cc similar to 219 K. Raman spectroscopy shows that the crystalline structure obtained by slow cooling is formed with [Tf2N](-) in cisoid conformation, whereas [Tf2N](-) in transoid conformation results from fast cooling. No preferred conformation of the butyl chain of the [C4C1C1C1N](+) cation is favored by slow or fast cooling of [C4C1C1C1N][Tf2N]. Low-frequency Raman spectroscopy shows that crystalline domains developing in the supercooled liquid result in a glacial state made of a mixture of crystallites and amorphous phase. However, these crystalline structures obtained by slow cooling or cold crystallization are not the same because anion-cation interactions promote local structures with distinct conformations of the [Tf2N](-) anion.
Resumo:
Solid lipid nanoparticles (SLN) without drug and SLN loaded with chloroaluminum phthalocyanine (AlClPc) were prepared by solvent diffusion method in aqueous system and characterized by thermal analyses and X-ray diffraction (XRD) in this study. Determination of particle size, zeta potential (ZP), and encapsulation efficiency were also evaluated. SLN containing AlClPc of nanometer size with high encapsulation efficiency and ZP were obtained. The results indicated that the size of SLN loaded with AlClPc is larger than that of the inert particle, but ZP is not changed significantly with incorporation of the drug. In differential scanning calorimetry (DSC) curves, it was observed that the melting point of stearic acid (SA) isolated and in SLN occurred at 55 and 64 degrees C, respectively, suggesting the presence of different polymorphs. DSC also shows that the crystallinity state of SLN was much less than that of SA isolated. The incorporation of drug in SLN may have been favored by this lower crystallinity degree of the samples. XRD techniques corroborated with the thermal analytic techniques, suggesting the polymorphic modifications of stearic acid.