2 resultados para Novikov Cohomology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This paper is a continuation of Dokuchaev and Novikov (2010) [8]. The interaction between partial projective representations and twisted partial actions of groups considered in Dokuchaev and Novikov (2010) [8] is treated now in a categorical language. In the case of a finite group G, a structural result on the domains of factor sets of partial projective representations of G is obtained in terms of elementary partial actions. For arbitrary G we study the component pM'(G) of totally-defined factor sets in the partial Schur multiplier pM(G) using the structure of Exel's semigroup. A complete characterization of the elements of pM'(G) is obtained for algebraically closed fields. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we introduce and study a class of algebras which we call ada algebras. An artin algebra is ada if every indecomposable projective and every indecomposable injective module lies in the union of the left and the right parts of the module category. We describe the Auslander-Reiten components of an ada algebra which is not quasi-tilted, showing in particular that its representation theory is entirely contained in that of its left and right supports, which are both tilted algebras. Also, we prove that an ada algebra over an algebraically closed field is simply connected if and only if its first Hochschild cohomology group vanishes. (C) 2011 Elsevier B.V. All rights reserved.