4 resultados para Norm Ideal
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The theoretical E-curve for the laminar flow of non-Newtonian fluids in circular tubes may not be accurate for real tubular systems with diffusion, mechanical vibration, wall roughness, pipe fittings, curves, coils, or corrugated walls. Deviations from the idealized laminar flow reactor (LFR) cannot be well represented using the axial dispersion or the tanks-in-series models of residence time distribution (RTD). In this work, four RTD models derived from non-ideal velocity profiles in segregated tube flow are proposed. They were used to represent the RTD of three tubular systems working with Newtonian and pseudoplastic fluids. Other RTD models were considered for comparison. The proposed models provided good adjustments, and it was possible to determine the active volumes. It is expected that these models can be useful for the analysis of LFR or for the evaluation of continuous thermal processing of viscous foods.
Resumo:
Recently, many chaos-based communication systems have been proposed. They can present the many interesting properties of spread spectrum modulations. Besides, they can represent a low-cost increase in security. However, their major drawback is to have a Bit Error Rate (BER) general performance worse than their conventional counterparts. In this paper, we review some innovative techniques that can be used to make chaos-based communication systems attain lower levels of BER in non-ideal environments. In particular, we succinctly describe techniques to counter the effects of finite bandwidth, additive noise and delay in the communication channel. Although much research is necessary for chaos-based communication competing with conventional techniques, the presented results are auspicious. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
We simulate top-energy Au + Au collisions using ideal hydrodynamics in order to make the first comparison to the complete set of midrapidity flow measurements made by the PHENIX Collaboration. A simultaneous calculation of nu(2), nu(3), nu(4), and the first event-by-event calculation of quadrangular flow defined with respect to the nu(2) event plane (nu(4){Psi(2)}) gives good agreement with measured values, including the dependence on both transverse momentum and centrality. This provides confirmation that the collision system is indeed well described as a quark-gluon plasma with an extremely small viscosity and that correlations are dominantly generated from collective effects. In addition, we present a prediction for nu(5).
Resumo:
A systematic approach to model nonlinear systems using norm-bounded linear differential inclusions (NLDIs) is proposed in this paper. The resulting NLDI model is suitable for the application of linear control design techniques and, therefore, it is possible to fulfill certain specifications for the underlying nonlinear system, within an operating region of interest in the state-space, using a linear controller designed for this NLDI model. Hence, a procedure to design a dynamic output feedback controller for the NLDI model is also proposed in this paper. One of the main contributions of the proposed modeling and control approach is the use of the mean-value theorem to represent the nonlinear system by a linear parameter-varying model, which is then mapped into a polytopic linear differential inclusion (PLDI) within the region of interest. To avoid the combinatorial problem that is inherent of polytopic models for medium- and large-sized systems, the PLDI is transformed into an NLDI, and the whole process is carried out ensuring that all trajectories of the underlying nonlinear system are also trajectories of the resulting NLDI within the operating region of interest. Furthermore, it is also possible to choose a particular structure for the NLDI parameters to reduce the conservatism in the representation of the nonlinear system by the NLDI model, and this feature is also one important contribution of this paper. Once the NLDI representation of the nonlinear system is obtained, the paper proposes the application of a linear control design method to this representation. The design is based on quadratic Lyapunov functions and formulated as search problem over a set of bilinear matrix inequalities (BMIs), which is solved using a two-step separation procedure that maps the BMIs into a set of corresponding linear matrix inequalities. Two numerical examples are given to demonstrate the effectiveness of the proposed approach.