13 resultados para Nonlinear constrained optimization problems

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

At each outer iteration of standard Augmented Lagrangian methods one tries to solve a box-constrained optimization problem with some prescribed tolerance. In the continuous world, using exact arithmetic, this subproblem is always solvable. Therefore, the possibility of finishing the subproblem resolution without satisfying the theoretical stopping conditions is not contemplated in usual convergence theories. However, in practice, one might not be able to solve the subproblem up to the required precision. This may be due to different reasons. One of them is that the presence of an excessively large penalty parameter could impair the performance of the box-constraint optimization solver. In this paper a practical strategy for decreasing the penalty parameter in situations like the one mentioned above is proposed. More generally, the different decisions that may be taken when, in practice, one is not able to solve the Augmented Lagrangian subproblem will be discussed. As a result, an improved Augmented Lagrangian method is presented, which takes into account numerical difficulties in a satisfactory way, preserving suitable convergence theory. Numerical experiments are presented involving all the CUTEr collection test problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many engineering sectors are challenged by multi-objective optimization problems. Even if the idea behind these problems is simple and well established, the implementation of any procedure to solve them is not a trivial task. The use of evolutionary algorithms to find candidate solutions is widespread. Usually they supply a discrete picture of the non-dominated solutions, a Pareto set. Although it is very interesting to know the non-dominated solutions, an additional criterion is needed to select one solution to be deployed. To better support the design process, this paper presents a new method of solving non-linear multi-objective optimization problems by adding a control function that will guide the optimization process over the Pareto set that does not need to be found explicitly. The proposed methodology differs from the classical methods that combine the objective functions in a single scale, and is based on a unique run of non-linear single-objective optimizers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes two new approaches for the sensitivity analysis of multiobjective design optimization problems whose performance functions are highly susceptible to small variations in the design variables and/or design environment parameters. In both methods, the less sensitive design alternatives are preferred over others during the multiobjective optimization process. While taking the first approach, the designer chooses the design variable and/or parameter that causes uncertainties. The designer then associates a robustness index with each design alternative and adds each index as an objective function in the optimization problem. For the second approach, the designer must know, a priori, the interval of variation in the design variables or in the design environment parameters, because the designer will be accepting the interval of variation in the objective functions. The second method does not require any law of probability distribution of uncontrollable variations. Finally, the authors give two illustrative examples to highlight the contributions of the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past few years, the field of global optimization has been very active, producing different kinds of deterministic and stochastic algorithms for optimization in the continuous domain. These days, the use of evolutionary algorithms (EAs) to solve optimization problems is a common practice due to their competitive performance on complex search spaces. EAs are well known for their ability to deal with nonlinear and complex optimization problems. Differential evolution (DE) algorithms are a family of evolutionary optimization techniques that use a rather greedy and less stochastic approach to problem solving, when compared to classical evolutionary algorithms. The main idea is to construct, at each generation, for each element of the population a mutant vector, which is constructed through a specific mutation operation based on adding differences between randomly selected elements of the population to another element. Due to its simple implementation, minimum mathematical processing and good optimization capability, DE has attracted attention. This paper proposes a new approach to solve electromagnetic design problems that combines the DE algorithm with a generator of chaos sequences. This approach is tested on the design of a loudspeaker model with 17 degrees of freedom, for showing its applicability to electromagnetic problems. The results show that the DE algorithm with chaotic sequences presents better, or at least similar, results when compared to the standard DE algorithm and other evolutionary algorithms available in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a metaheuristic algorithm inspired in evolutionary computation and swarm intelligence concepts and fundamentals of echolocation of micro bats. The aim is to optimize the mono and multiobjective optimization problems related to the brushless DC wheel motor problems, which has 5 design parameters and 6 constraints for the mono-objective problem and 2 objectives, 5 design parameters, and 5 constraints for multiobjective version. Furthermore, results are compared with other optimization approaches proposed in the recent literature, showing the feasibility of this newly introduced technique to high nonlinear problems in electromagnetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogeography is the science that studies the geographical distribution and the migration of species in an ecosystem. Biogeography-based optimization (BBO) is a recently developed global optimization algorithm as a generalization of biogeography to evolutionary algorithm and has shown its ability to solve complex optimization problems. BBO employs a migration operator to share information between the problem solutions. The problem solutions are identified as habitat, and the sharing of features is called migration. In this paper, a multiobjective BBO, combined with a predator-prey (PPBBO) approach, is proposed and validated in the constrained design of a brushless dc wheel motor. The results demonstrated that the proposed PPBBO approach converged to promising solutions in terms of quality and dominance when compared with the classical BBO in a multiobjective version.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the behavior of a family of steady-state solutions of a nonlinear reaction diffusion equation when some reaction and potential terms are concentrated in a e-neighborhood of a portion G of the boundary. We assume that this e-neighborhood shrinks to G as the small parameter e goes to zero. Also, we suppose the upper boundary of this e-strip presents a highly oscillatory behavior. Our main goal here was to show that this family of solutions converges to the solutions of a limit problem, a nonlinear elliptic equation that captures the oscillatory behavior. Indeed, the reaction term and concentrating potential are transformed into a flux condition and a potential on G, which depends on the oscillating neighborhood. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the effects of uncertainty and expected costs of failure on optimum structural design are investigated, by comparing three distinct formulations of structural optimization problems. Deterministic Design Optimization (DDO) allows one the find the shape or configuration of a structure that is optimum in terms of mechanics, but the formulation grossly neglects parameter uncertainty and its effects on structural safety. Reliability-based Design Optimization (RBDO) has emerged as an alternative to properly model the safety-under-uncertainty part of the problem. With RBDO, one can ensure that a minimum (and measurable) level of safety is achieved by the optimum structure. However, results are dependent on the failure probabilities used as constraints in the analysis. Risk optimization (RO) increases the scope of the problem by addressing the compromising goals of economy and safety. This is accomplished by quantifying the monetary consequences of failure, as well as the costs associated with construction, operation and maintenance. RO yields the optimum topology and the optimum point of balance between economy and safety. Results are compared for some example problems. The broader RO solution is found first, and optimum results are used as constraints in DDO and RBDO. Results show that even when optimum safety coefficients are used as constraints in DDO, the formulation leads to configurations which respect these design constraints, reduce manufacturing costs but increase total expected costs (including expected costs of failure). When (optimum) system failure probability is used as a constraint in RBDO, this solution also reduces manufacturing costs but by increasing total expected costs. This happens when the costs associated with different failure modes are distinct. Hence, a general equivalence between the formulations cannot be established. Optimum structural design considering expected costs of failure cannot be controlled solely by safety factors nor by failure probability constraints, but will depend on actual structural configuration. (c) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical impedance tomography (EIT) is an imaging technique that attempts to reconstruct the impedance distribution inside an object from the impedance between electrodes placed on the object surface. The EIT reconstruction problem can be approached as a nonlinear nonconvex optimization problem in which one tries to maximize the matching between a simulated impedance problem and the observed data. This nonlinear optimization problem is often ill-posed, and not very suited to methods that evaluate derivatives of the objective function. It may be approached by simulated annealing (SA), but at a large computational cost due to the expensive evaluation process of the objective function, which involves a full simulation of the impedance problem at each iteration. A variation of SA is proposed in which the objective function is evaluated only partially, while ensuring boundaries on the behavior of the modified algorithm.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work develops a computational approach for boundary and initial-value problems by using operational matrices, in order to run an evolutive process in a Hilbert space. Besides, upper bounds for errors in the solutions and in their derivatives can be estimated providing accuracy measures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solution of structural reliability problems by the First Order method require optimization algorithms to find the smallest distance between a limit state function and the origin of standard Gaussian space. The Hassofer-Lind-Rackwitz-Fiessler (HLRF) algorithm, developed specifically for this purpose, has been shown to be efficient but not robust, as it fails to converge for a significant number of problems. On the other hand, recent developments in general (augmented Lagrangian) optimization techniques have not been tested in aplication to structural reliability problems. In the present article, three new optimization algorithms for structural reliability analysis are presented. One algorithm is based on the HLRF, but uses a new differentiable merit function with Wolfe conditions to select step length in linear search. It is shown in the article that, under certain assumptions, the proposed algorithm generates a sequence that converges to the local minimizer of the problem. Two new augmented Lagrangian methods are also presented, which use quadratic penalties to solve nonlinear problems with equality constraints. Performance and robustness of the new algorithms is compared to the classic augmented Lagrangian method, to HLRF and to the improved HLRF (iHLRF) algorithms, in the solution of 25 benchmark problems from the literature. The new proposed HLRF algorithm is shown to be more robust than HLRF or iHLRF, and as efficient as the iHLRF algorithm. The two augmented Lagrangian methods proposed herein are shown to be more robust and more efficient than the classical augmented Lagrangian method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.