3 resultados para Non-compliance situations

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction: Nurse understaffing is frequently hypothesized as a potential risk factor for healthcare-associated infections (HAI). This study aimed to evaluate the role of nursing workload in the occurrence of HAI, using Nursing Activities Score (NAS). Methods: This prospective cohort study enrolled all patients admitted to 3 Medical ICUs and one step-down unit during 3 months (2009). Patients were followed-up until HAI, discharge or death. Information was obtained from direct daily observation of medical and nursing rounds, chart review and monitoring of laboratory system. Nursing workload was determined using NAS. Non-compliance to the nurses' patient care plans (NPC) was identified. Demographic data, clinical severity, invasive procedures, hospital interventions, and the occurrence of other adverse events were also recorded. Patients who developed HAI were compared with those who did not. Results: 195 patients were included and 43 (22%) developed HAI: 16 pneumonia, 12 urinary-tract, 8 bloodstream, 2 surgical site, 2 other respiratory infections and 3 other. Average NAS and average proportion of non compliance with NPC were significantly higher in HAI patients. They were also more likely to suffer other adverse events. Only excessive nursing workload (OR: 11.41; p: 0.019) and severity of patient's clinical condition (OR: 1.13; p: 0.015) remained as risk factors to HAI. Conclusions: Excessive nursing workload was the main risk factor for HAI, when evaluated together with other invasive devices except mechanical ventilation. To our knowledge, this study is the first to evaluate prospectively the nursing workload as a potential risk factor for HAI, using NAS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background Blood leukocytes constitute two interchangeable sub-populations, the marginated and circulating pools. These two sub-compartments are found in normal conditions and are potentially affected by non-normal situations, either pathological or physiological. The dynamics between the compartments is governed by rate constants of margination (M) and return to circulation (R). Therefore, estimates of M and R may prove of great importance to a deeper understanding of many conditions. However, there has been a lack of formalism in order to approach such estimates. The few attempts to furnish an estimation of M and R neither rely on clearly stated models that precisely say which rate constant is under estimation nor recognize which factors may influence the estimation. Results The returning of the blood pools to a steady-state value after a perturbation (e.g., epinephrine injection) was modeled by a second-order differential equation. This equation has two eigenvalues, related to a fast- and to a slow-component of the dynamics. The model makes it possible to identify that these components are partitioned into three constants: R, M and SB; where SB is a time-invariant exit to tissues rate constant. Three examples of the computations are worked and a tentative estimation of R for mouse monocytes is presented. Conclusions This study establishes a firm theoretical basis for the estimation of the rate constants of the dynamics between the blood sub-compartments of white cells. It shows, for the first time, that the estimation must also take into account the exit to tissues rate constant, SB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the isotropization of a homogeneous, strongly coupled, non-Abelian plasma by means of its gravity dual. We compare the time evolution of a large number of initially anisotropic states as determined, on the one hand, by the full nonlinear Einstein's equations and, on the other, by the Einstein's equations linearized around the final equilibrium state. The linear approximation works remarkably well even for states that exhibit large anisotropies. For example, it predicts with a 20% accuracy the isotropization time, which is of the order of t(iso) less than or similar to 1/T, with T the final equilibrium temperature. We comment on possible extensions to less symmetric situations.