12 resultados para Non-Fourier heat conduction

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reproducing Fourier's law of heat conduction from a microscopic stochastic model is a long standing challenge in statistical physics. As was shown by Rieder, Lebowitz and Lieb many years ago, a chain of harmonically coupled oscillators connected to two heat baths at different temperatures does not reproduce the diffusive behaviour of Fourier's law, but instead a ballistic one with an infinite thermal conductivity. Since then, there has been a substantial effort from the scientific community in identifying the key mechanism necessary to reproduce such diffusivity, which usually revolved around anharmonicity and the effect of impurities. Recently, it was shown by Dhar, Venkateshan and Lebowitz that Fourier's law can be recovered by introducing an energy conserving noise, whose role is to simulate the elastic collisions between the atoms and other microscopic degrees of freedom, which one would expect to be present in a real solid. For a one-dimensional chain this is accomplished numerically by randomly flipping - under the framework of a Poisson process with a variable “rate of collisions" - the sign of the velocity of an oscillator. In this poster we present Langevin simulations of a one-dimensional chain of oscillators coupled to two heat baths at different temperatures. We consider both harmonic and anharmonic (quartic) interactions, which are studied with and without the energy conserving noise. With these results we are able to map in detail how the heat conductivity k is influenced by both anharmonicity and the energy conserving noise. We also present a detailed analysis of the behaviour of k as a function of the size of the system and the rate of collisions, which includes a finite-size scaling method that enables us to extract the relevant critical exponents. Finally, we show that for harmonic chains, k is independent of temperature, both with and without the noise. Conversely, for anharmonic chains we find that k increases roughly linearly with the temperature of a given reservoir, while keeping the temperature difference fixed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work propounds an inverse method to estimate the heat sources in the transient two-dimensional heat conduction problem in a rectangular domain with convective bounders. The non homogeneous partial differential equation (PDE) is solved using the Integral Transform Method. The test function for the heat generation term is obtained by the chip geometry and thermomechanical cutting. Then the heat generation term is estimated by the conjugated gradient method (CGM) with adjoint problem for parameter estimation. The experimental trials were organized to perform six different conditions to provide heat sources of different intensities. This method was compared with others in the literature and advantages are discussed. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the existence of mild and classical solutions for a class of abstract non-autonomous neutral functional differential equations. An application to partial neutral differential equations is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an experimental method to estimate the convective heat transfer of cutting fluids in a laminar flow regime applied on a thin steel plate. The heat source provided by the metal cutting was simulated by electrical heating of the plate. Three different cooling conditions were evaluated: a dry cooling system, a flooded cooling system and a minimum quantity of lubrication cooling system, as well as two different cutting fluids for the last two systems. The results showed considerable enhancement of convective heat transfer using the flooded system. For the dry and minimum quantity of lubrication systems, the heat conduction inside the body was much faster than the heat convection away from its surface. In addition, using the Biot number, the possible models were analyzed for conduction heat problems for each experimental condition tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we study the existence of mild solutions for fractional neutral integro-differential equations with infinite delay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-gas turbines are a good alternative for on-site power generation, since their operation is very reliable. The possibility of operating with various fuels increases versatility and, as a result, the usage of these devices. Focusing on a performance improvement of a tri-fuel low-cost micro-gas turbine, this work presents investigations of the inner flow of its combustion chamber. The aim of this analysis was the characterization of the flame structure by the temperature field of the chamber inner flow. The chamber was fuelled with natural gas. In the current chamber, a swirler and a reversed flow configuration were utilized to provide flame stabilization. The inner flow investigations were done with numerical analysis, which were compared to experimental data. The analysis of the inner flow was done with numerical simulations, which used the RSM turbulence model. A β-PDF equilibrium model was adopted to account for the turbulent combustion process. Different models of heat transfer were compared. Thermal radiation and specially heat conduction in the liner walls played significant roles on results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Uniform conduction slowing has been considered a characteristic of inherited demyelinating neuropathies. We present an 18-year-old girl, born from first cousins, that presented a late motor and psychological development, cerebellar ataxia, facial diplegia, abnormal eye movement, scoliosis, and corpus callosum agenesis, whose compound muscle action potentials were slowed and dispersed. A mutation was found on KCC3 gene, confirming Andermann syndrome, a disease that must be included in the differential diagnosis of inherited neuropathies with non-uniform conduction slowing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To refine methods of electroretinographical (ERG) recording for the analysis of low retinal potentials under scotopic conditions in advanced retinal degenerative diseases. Standard Ganzfeld ERG equipment (Diagnosys LLC, Cambridge, UK) was used in 27 healthy volunteers (mean age 28 +/- A SD 8.5 years) to define the stimulation protocol. The protocol was then applied in clinical routine and 992 recordings were obtained from patients (mean age 40.6 +/- A 18.3 years) over a period of 5 years. A blue stimulus with a flicker frequency of 9 Hz was specified under scotopic conditions to preferentially record rod-driven responses. A range of stimulus strengths (0.0000012-6.32 scot. cd s/mA(2) and 6-14 ms flash duration) was tested for maximal amplitudes and interference between rods and cones. Analysis of results was done by standard Fourier Transformation and assessment of signal-to-noise ratio. Optimized stimulus parameters were found to be a time-integrated luminance of 0.012 scot. cd s/mA(2) using a blue (470 nm) flash of 10 ms duration at a repetition frequency of 9 Hz. Characteristic stimulus strength versus amplitude curves and tests with stimuli of red or green wavelength suggest a predominant rod-system response. The 9 Hz response was found statistically distinguishable from noise in 38% of patients with otherwise non-recordable rod responses according to International Society for Clinical Electrophysiology of Vision standards. Thus, we believe this protocol can be used to record ERG potentials in patients with advanced retinal diseases and in the evaluation of potential treatments for these patients. The ease of implementation in clinical routine and of statistical evaluation providing an observer-independent evaluation may further facilitate its employment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dengue virus non-structural 1 (NS1) protein contributes to evasion of host immune defenses and represents a target for immune responses. Evidences generated in experimental models, as well as the immune responses elicited by infected individuals, showed that induction of anti-NS1 immunity correlates with protective immunity but may also result in the generation of cross-reactive antibodies that recognize platelets and proteins involved in the coagulation cascade. In the present work, we evaluated the immune responses, protection to type 2 dengue virus (DENV2) challenges and safety parameters in BALB/c mice vaccinated with a recombinant NS1 protein in combination with three different adjuvants: aluminum hydroxide (alum), Freund's adjuvant (FA) or a genetically detoxified derivative of the heat-labile toxin (LTG33D), originally produced by some enterotoxigenic Escherichia coil (ETEC) strains. Mice were subcutaneously (s.c.) immunized with different vaccine formulations and the induced NS1-specific responses, including serum antibodies and T cell responses, were measured. Mice were also subjected to lethal challenges with the DENV2 NGC strain. The results showed that maximal protective immunity (50%) was achieved in mice vaccinated with NS1 in combination with LIG33D. Analyses of the NS1-specific immune responses showed that the anti-virus protection correlated mainly with the serum anti-NS1 antibody responses including higher avidity to the target antigen. Mice immunized with LTG33D elicited a prevailing IgG2a subclass response and generated antibodies with stronger affinity to the antigen than those generated in mice immunized with the other vaccine formulations. The vaccine formulations were also evaluated regarding induction of deleterious side effects and, in contrast to mice immunized with the FA-adjuvanted vaccine, no significant hepatic damage or enhanced C-reactive protein levels were detected in mice immunized with NS1 and LTG33D. Similarly, no detectable alterations in bleeding time and hematological parameters were detected in mice vaccinated with NS1 and LTG33D. Altogether, these results indicate that the combination of a purified recombinant NS1 and a nontoxic LT derivative is a promising alternative for the generation of safe and effective protein-based anti-dengue vaccine. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the transport of heat along a chain of particles interacting through anharmonic potentials consisting of quartic terms in addition to harmonic quadratic terms and subject to heat reservoirs at its ends. Each particle is also subject to an impulsive shot noise with exponentially distributed waiting times whose effect is to change the sign of its velocity, thus conserving the energy of the chain. We show that the introduction of this energy conserving stochastic noise leads to Fourier's law. That is for large system size L the heat current J behaves as J ‘approximately’ 1/L, which amounts to say that the conductivity k is constant. The conductivity is related to the current by J = kΔT/L, where ΔT is the difference in the temperatures of the reservoirs. The behavior of heat conductivity k for small intensities¸ of the shot noise and large system sizes L are obtained by assuming a scaling behavior of the type k = ‘L POT a Psi’(L’lambda POT a/b’) where a and b are scaling exponents. For the pure harmonic case a = b = 1, characterizing a ballistic conduction of heat when the shot noise is absent. For the anharmonic case we found values for the exponents a and b smaller then 1 and thus consistent with a superdiffusive conduction of heat without the shot noise. We also show that the heat conductivity is not constant but is an increasing function of temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.