4 resultados para Nihon Joshi Daigaku.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Batch combustion of fixed beds of coal, bagasse and blends thereof took place in a pre-heated two-stage electric laboratory furnace, under high-heating rates. The average input fuel/air equivalence ratios were similar for all fuels. The primary and secondary furnace temperatures were varied from 800 degrees C to 1000 degrees C. The effects of fuel blending, combustion staging, and operating furnace temperatures on the emissions from the two fuels were assessed. Furnace effluents were analyzed for carbon dioxide and for products of incomplete combustion (PIC) including CO, volatile and semi-volatile hydrocarbons, as well as particulate matter. Results showed that whereas CO2 was generated during both the observed sequential volatile matter and char combustion phases of the fuels, PICs were only generated during the volatile matter combustion phase. CO2 emissions were the highest from coal, whereas CO and other PIC emissions were the highest from bagasse. Under this particular combustion configuration, combustion of the volatile matter of the blends resulted in lower yields of PIC, than combustion of the volatiles of the neat fuels. Though CO and unburned hydrocarbons from coal as well as from the blends did not exhibit a clear trend with furnace temperature, such emissions from bagasse clearly increased with temperature. The presence of the secondary furnace (afterburner) typically reduced PIC, by promoting further oxidation of the primary furnace effluents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This work reports on emissions of unburned hydrocarbon species from batch combustion of fixed beds of coal, sugar-cane bagasse, and blends thereof in a pre-heated two-stage laboratory furnace operated in the temperature range of 800-1000 degrees C. The effects of fuel blending, combustion staging, and operating furnace temperatures on emissions of pollutants were assessed. Furnace effluents were analyzed for products of incomplete combustion (PICs) including CO, volatile and semi-volatile hydrocarbons, and particulate matter, as has been reported in Ref. [1]. Emitted unburned hydrocarbons include traces of potentially health-hazardous Polycyclic Aromatic Hydrocarbons (PAHs), which are the focus of this work. Under the batch combustion conditions implemented herein, PAH were only generated during the volatile combustion phase of the fuels. The most prevalent species were in descending order: naphthalene, acenaphthylene, phenanthrene, fluoranthene, pyrene, dibenzofuran, benzofuran, byphenyl, fluorene, 9H-fluoren-9-one, acephenantrylene, benzo[b] fluoranthene, 1-methyl-naphthalene; 2-methyl-naphthalene, benz[a] anthracene and benzo[a] pyrene. PAH yields were the highest from combustion of neat bagasse. Combustion of the blends resulted in lower yields of PAH, than combustion of either of their neat fuel constituents. Increasing the furnace operating temperature enhanced the PAH emissions from bagasse, but had little effect on those from the coal or from the blends. Flue gas treatment in a secondary-stage furnace, upon with additional air, typically reduced PAH yields by promoting oxidation of the primary-stage furnace effluents. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In the semiarid of the state of Paraíba, the anti-rabies vaccination is not common, most of the local inhabitants who deal with the animals do not know the incidence of the disease in the region. In this study, samples of foxes (Pseudalopex vetulus), insectivorous bats (Molossus molossus), raccoons (Procyon cancrivorous) and domestic animals brains were submitted to the diagnosis of rabies, by using the direct fluorescent antibody technique (d-FAT) and mouse inoculation test (MIT). Of the 581 examined materials, 50 (8.60 %) were positive for d-FAT and 47 (8.09 %) for MIT. From the positive samples for rabies, RNAs were extracted and transformed to cDNA, at the Laboratory of Rabies/Faculdade de Medicina Veterinária e Zootecnia/USP, SP. The phylogenetic characterization of the N gene was performed at the Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, Universidade Nihon, Faculdade de Ciências Bioresource, Fujisawa, Kanagawa, Japão. Based on the results of genotyping and phylogenetic analyzes, it is concluded that the epidemiology of rabies is complex in the semiarid of Paraíba, with different viral variants being maintained in domestic dogs, foxes, insectivorous bats and vampire bats. All the isolates examined belong to the genotype I of the genus Lyssavirus and it is possible to state that in the region, foxes are important sylvatic reservoirs of the rabies virus.
Resumo:
The two classical forms of human trypanosomoses are sleeping sickness due to Trypanosoma brucei gambiense or T. brucei rhodesiense, and Chagas disease due to T. cruzi. However, a number of atypical human infections caused by other T. species (or sub-species) have been reported, namely due to T. brucei brucei, T. vivax, T. congolense, T. evansi, T. lewisi, and T. lewisi-like. These cases are reviewed here. Some infections were transient in nature, while others required treatments that were successful in most cases, although two cases were fatal. A recent case of infection due to T. evansi was related to a lack of apolipoprotein L-I, but T. lewisi infections were not related to immunosuppression or specific human genetic profiles. Out of 19 patients, eight were confirmed between 1974 and 2010, thanks to improved molecular techniques. However, the number of cases of atypical human trypanosomoses might be underestimated. Thus, improvement, evaluation of new diagnostic tests, and field investigations are required for detection and confirmation of these atypical cases.