10 resultados para Nicotinic Acetylcholine-receptor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Nicotinic acetylcholine receptors (nAChRs) have been studied in detail with regard to their interaction with therapeutic and drug addiction-related compounds. Using a structureactivity approach, we have examined the relationship among the molecular features of a set of eight para-R-substituted N,N-[(dimethylamino)ethyl] benzoate hydrochlorides, structurally related to procaine and their affinity for the a3 beta 4 nAChR heterologously expressed in KXa3 beta 4R2 cells. Affinity values (log[1/IC50]) of these compounds for the a3 beta 4 nAChR were determined by their competition with [3H]TCP binding. Log(1/IC50) values were analyzed considering different hydrophobic and electronic parameters and those related to molar refractivity. These have been experimentally determined or were taken from published literature. In accordance with literature observations, the generated cross-validated quantitative structureactivity relationship (QSAR) equations indicated a significant contribution of hydrophobic term to binding affinity of procaine analogs to the receptor and predicted affinity values for several local anesthetics (LAs) sets taken from the literature. The predicted values by using the QSAR model correlated well with the published values both for neuronal and for electroplaque nAChRs. Our work also reveals the general structure features of LAs that are important for interaction with nAChRs as well as the structural modifications that could be made to enhance binding affinity. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The goal of this study was to evaluate if the immunohistochemical expression of alpha-3 neuronal nicotinic acetylcholine receptor subunit in sympathetic ganglia remains stable after brain death, determining the possible use of sympathetic thoracic ganglia from subjects after brain death as study group. The third left sympathetic ganglion was resected from patients divided in two groups: BD-organ donors after brain death and CON-patients submitted to sympathectomy for hyperhidrosis (control group). Immunohistochemical staining for alpha-3 neuronal nicotinic acetylcholine receptor subunit was performed; strong and weak expression areas were quantified in both groups. The BD group showed strong alpha-3 neuronal nicotinic acetylcholine receptor expression in 6.55% of the total area, whereas the CON group showed strong expression in 5.91% (p = 0.78). Weak expression was found in 6.47% of brain-dead subjects and in 7.23% of control subjects (p = 0.31). Brain death did not affect the results of the immunohistochemical analysis of sympathetic ganglia, and its use as study group is feasible.
Resumo:
It is already known that progressive degeneration of cholinergic neurons in brain areas such as the hippocampus and the cortex leads to memory deficits, as observed in Alzheimer's disease. This work verified the effects of the infusion of amyloid-beta (A beta) peptide associated to an attentional rehearsal on the density of alpha 7 nicotinic cholinergic receptor (nAChR) in the brain of male Wistar rats. Animals received intracerebroventricular infusion of A beta or vehicle (control - C) and their attention was stimulated weekly (Stimulated A beta group: S-A beta and Stimulated Control group: SC) or not (Non-Stimulated A beta group: N-SA beta and Non-Stimulated Control group: N-SC), using an active avoidance apparatus. Conditioned avoidance responses (CAR) were registered. Chronic infusion of A beta caused a 37% reduction in CAR for N-SA beta. In S-A beta, this reduction was not observed. At the end, brains were extracted and autoradiography for alpha 7 nAChR was conducted using [I-125]-alpha-bungarotoxin. There was an increase in alpha 7 density in hippocampus, cortex and amygdala of SA beta animals, together with the memory preservation. In recent findings from our lab using mice infused with A beta and the alpha 7 antagonist methyllycaconitine, and stimulated weekly in the same apparatus, it was observed that memory maintenance was abolished. So, the increase in alpha 7 density in brain areas related to memory might be related to a participation of this receptor in the long-lasting change in synaptic plasticity, which is important to improve and maintain memory consolidation.
Resumo:
Introduction: Video-assisted thoracic sympathectomy provides excellent resolution of palmar and axillary hyperhidrosis but is associated with compensatory hyperhidrosis. Low doses of oxybutynin, an anticholinergic medication that competitively antagonizes the muscarinic acetylcholine receptor, can be used to treat palmar hyperhidrosis with fewer side effects. Objective: This study evaluated the effectiveness and patient satisfaction of oral oxybutynin at low doses (5 mg twice daily) compared with placebo for treating palmar hyperhidrosis. Methods: This was prospective, randomized, and controlled study. From December 2010 to February 2011, 50 consecutive patients with palmar hyperhidrosis were treated with oxybutynin or placebo. Data were collected from 50 patients, but 5 (10.0%) were lost to follow-up. During the first week, patients received 2.5 mg of oxybutynin once daily in the evening. From days 8 to 21, they received 2.5 mg twice daily, and from day 22 to the end of week 6, they received 5 mg twice daily. All patients underwent two evaluations, before and after (6 weeks) the oxybutynin treatment, using a clinical questionnaire and a clinical protocol for quality of life. Results: Palmar and axillary hyperhidrosis improved in >70% of the patients, and 47.8% of those presented great improvement. Plantar hyperhidrosis improved in >90% of the patients. Most patients (65.2%) showed improvements in their quality of life. The side effects were minor, with dry mouth being the most frequent (47.8%). Conclusions: Treatment of palmar and axillary hyperhidrosis with oxybutynin is a good initial alternative for treatment given that it presents good results and improves quality of life. (J Vasc Surg 2012;55:1696-700.)
Resumo:
Objective: To describe 16 patients with a coincidence of 2 rare diseases: aquaporin-4 antibody (AQP4-Ab)-mediated neuromyelitis optica spectrum disorder (AQP4-NMOSD) and acetylcholine receptor antibody (AChR-Ab)-mediated myasthenia gravis (AChR-MG). Methods: The clinical details and antibody results of 16 patients with AChR-MG and AQP4-NMOSD were analyzed retrospectively. Results: All had early-onset AChR-MG, the majority with mild generalized disease, and a high proportion achieved remission. Fifteen were female; 11 were Caucasian. In 14/16, the MG preceded NMOSD (median interval: 16 years) and 11 of these had had a thymectomy although 1 only after NMOSD onset. In 4/5 patients tested, AQP4-Abs were detectable between 4 and 16 years prior to disease onset, including 2 patients with detectable AQP4-Abs prior to thymectomy. AChR-Abs decreased and the AQP4-Ab levels increased over time in concordance with the relevant disease. AChR-Abs were detectable at NMOSD onset in the one sample available from 1 of the 2 patients with NMOSD before MG. Conclusions: Although both conditions are rare, the association of MG and NMOSD occurs much more frequently than by chance and the MG appears to follow a benign course. AChR-Abs or AQP4-Abs may be present years before onset of the relevant disease and the antibody titers against AQP4 and AChR tend to change in opposite directions. Although most cases had MG prior to NMOSD onset, and had undergone thymectomy, NMOSD can occur first and in patients who have not had their thymus removed. Neurology (R) 2012;78:1601-1607
Resumo:
Cancers of the upper aerodigestive tract (UADT) are common forms of malignancy associated with tobacco and alcohol exposures, although human papillomavirus and nutritional deficiency are also important risk factors. While somatically acquired DNA methylation changes have been associated with UADT cancers, what triggers these events and precise epigenetic targets are poorly understood. In this study, we applied quantitative profiling of DNA methylation states in a panel of cancer-associated genes to a case-control study of UADT cancers. Our analyses revealed a high frequency of aberrant hypermethylation of several genes, including MYOD1, CHRNA3 and MTHFR in UADT tumors, whereas CDKN2A was moderately hypermethylated. Among differentially methylated genes, we identified a new gene (the nicotinic acetycholine receptor gene) as target of aberrant hypermethylation in UADT cancers, suggesting that epigenetic deregulation of nicotinic acetycholine receptors in non-neuronal tissues may promote the development of UADT cancers. Importantly, we found that sex and age is strongly associated with the methylation states, whereas tobacco smoking and alcohol intake may also influence the methylation levels in specific genes. This study identifies aberrant DNA methylation patterns in UADT cancers and suggests a potential mechanism by which environmental factors may deregulate key cellular genes involved in tumor suppression and contribute to UADT cancers.
Resumo:
Moderate wine intake (i.e., 1-2 glasses of wine a day) is associated with a reduced risk of morbidity and mortality from cardiovascular disease. The aim of this study was to evaluate the anti-atherosclerotic effects of a nonalcoholic ethyl acetate fraction (EAF) from a South Brazilian red wine obtained from Vitis labrusca grapes. Experiments were carried out on low-density lipoprotein (LDL) receptor knockout (LDLr-/-) mice, which were subjected to a hypercholesterolemic diet and treated with doses of EAF (3, 10, and 30 mg/kg) for 12 weeks. At the end of the treatment, the level of plasma lipids, the vascular reactivity, and the atherosclerotic lesions were evaluated. Our results demonstrated that the treatment with EAF at 3 mg/kg significantly decreased total cholesterol, triglycerides, and LDL plus very low-density lipoprotein levels compared with control hypercholesterolemic mice. The treatment of mice with EAF at 3 mg/kg also preserved the vasodilatation induced by acetylcholine on isolated thoracic aorta from hypercholesterolemic LDLr-/- mice. This result is in agreement with the degree of lipid deposit on arteries. Taken together, the results show for the first time that the lowest concentration of an EAF obtained from a red wine produced in southern Brazil significantly reduced the progression of atherosclerosis in mice.
Resumo:
Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
The mediodorsal nucleus of the thalamus (MD) is a rich source of afferents to the medial prefrontal cortex (mPFC). Dysfunctions in the thalamo-prefrontal connections can impair networks implicated in working memory, some of which are affected in Alzheimer disease and schizophrenia. Considering the importance of the cholinergic system to cortical functioning, our study aimed to investigate the effects of global cholinergic activation of the brain on MD-mPFC synaptic plasticity by measuring the dynamics of long-term potentiation (LTP) and depression (LTD) in vivo. Therefore, rats received intraventricular injections either of the muscarinic agonist pilocarpine (PILO; 40 nmol/mu L), the nicotinic agonist nicotine (NIC; 320 nmol/mu L), or vehicle. The injections were administered prior to either thalamic high-frequency (HFS) or low-frequency stimulation (LFS). Test pulses were applied to MD for 30 min during baseline and 240 min after HFS or LFS, while field postsynaptic potentials were recorded in the mPFC. The transient oscillatory effects of PILO and NIC were monitored through recording of thalamic and cortical local field potentials. Our results show that HFS did not affect mPFC responses in vehicle-injected rats, but induced a delayed-onset LTP with distinct effects when applied following PILO or NIC. Conversely, LFS induced a stable LTD in control subjects, but was unable to induce LTD when applied after PILO or NIC. Taken together, our findings show distinct modulatory effects of each cholinergic brain activation on MD-mPFC plasticity following HFS and LFS. The LTP-inducing action and long-lasting suppression of cortical LTD induced by PILO and NIC might implicate differential modulation of thalamo-prefrontal functions under low and high input drive.
Resumo:
Background: Kinins, with bradykinin and des-Arg(9)-bradykinin being the most important ones, are pro-inflammatory peptides released after tissue injury including stroke. Although the actions of bradykinin are in general well characterized; it remains controversial whether the effects of bradykinin are beneficial or not. Kinin-B2 receptor activation participates in various physiological processes including hypotension, neurotransmission and neuronal differentiation. The bradykinin metabolite des-Arg(9)-bradykinin as well as Lys-des-Arg(9)-bradykinin activates the kinin-B1 receptor known to be expressed under inflammatory conditions. We have investigated the effects of kinin-B1 and B2 receptor activation on N-methyl-Daspartate (NMDA)-induced excitotoxicity measured as decreased capacity to produce synaptically evoked population spikes in the CA1 area of rat hippocampal slices. Principal Findings: Bradykinin at 10 nM and 1 mu M concentrations triggered a neuroprotective cascade via kinin-B2 receptor activation which conferred protection against NMDA-induced excitotoxicity. Recovery of population spikes induced by 10 nM bradykinin was completely abolished when the peptide was co-applied with the selective kinin-B2 receptor antagonist HOE-140. Kinin-B2 receptor activation promoted survival of hippocampal neurons via phosphatidylinositol 3-kinase, while MEK/MAPK signaling was not involved in protection against NMDA-evoked excitotoxic effects. However, 100 nM Lys-des-Arg(9)-bradykinin, a potent kinin-B1 receptor agonist, reversed bradykinin-induced population spike recovery. The inhibition of population spikes recovery was reversed by PD98059,showing that MEK/MAPK was involved in the induction of apoptosis mediated by the B1 receptor. Conclusions: Bradykinin exerted protection against NMDA-induced excitotoxicity which is reversed in the presence of a kinin-B1 receptor agonist. As bradykinin is converted to the kinin-B1 receptor metabolite des-Arg(9)-bradykinin by carboxypeptidases, present in different areas including in brain, our results provide a mechanism for the neuroprotective effect in vitro despite of the deleterious effect observed in vivo.