6 resultados para New combinations
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Compsodactylus new genus and C. scabrosus new species are described and C. martinezi (Frey, 1972) new combination and C. parvulus (Frey, 1970) new combination are redescribed and transferred from Dicrania LePeletier & Audinet-Serville, 1828. The new genus is placed in Macrodactylini (Coleoptera: Scarabaeidae: Melolonthinae) and occurs in the South American Andean and Preandean regions. A key to the species, modification on the recent generic key to Macrodactylini, and distributional map are presented.
Resumo:
As part of an ongoing revision of the family Gonyleptidac, we have identified many species that are synonyms of previously described species or misplaced in this family. This article summarizes these findings, adding previously unavailable information or correcting imprecise observations to justify the presented taxonomic changes. The following new familial or subfamilial assignments are proposed: Nemastygnus Roewer, 1929 and Taulisa Roewer, 1956 are transferred to Agoristenidae, Agoristeninae; Napostygnus Roewer, 1929 to Cranaidae; Ceropachylinus peruvianus Roewer, 1956 and Pirunipygus Roewer, 1936 are transferred to Gonyleptidae, Ampycinae; Gyndesops Roewer, 1943, Haversia Roewer, 1913 and Oxapampeus Roewer, 1963 are transferred to Gonyleptidae, Pachylinae. The following generic synonymies are proposed for the family Gonyleptidae: Acanthogonyleptes Mello-Leitao, 1922 = Centroleptes Roewer, 1943; Acrographinotus Roewer, 1929 = Unduavius Roewer, 1929; Gonyleptes Kirby, 1819 = Collonychium Bertkau, 1880; Mischonyx Bertkau, 1880 = Eugonyleptes Roewer, 1913 and Gonazula Roewer, 1930; Parampheres Roewer, 1913 = Metapachyloides Roewer, 1917; Pseudopucrolia Roewer, 19 12 = Meteusarcus Roewer, 1913; Haversia Roewer, 19 13 = Hoggellula Roewer, 1930. The following specific synonymies are proposed for the family Gonyleptidae: Acanthogonyleptes singularis (Mello-Leitao, 1935) = Centroleptes flavus Roewer, 1943, syn. n.; Geraeocormobius sylvarum Holmberg, 1887 = Discocyrtus serrifemur Roewer, 1943, syn. n.; Gonyleptellus bimaculatus (Sorensen, 1884) = Gonyleptes cancellatus Roewer, 1917, syn. n.; Gonyleptes atrus Mello-Leitao, 1923 = Weyhia brieni Giltay, 1928, syn. n.; Gonyleptes fragilis Mello-Leitao, 1923 = Gonyleptes banana Kury, 2003, syn. n.; Gonyleptes horridus Kirby, 1819 = Collonychium bicuspidatum Bertkau, 1880, syn. n., Gonyleptes borgmeyeri Mello-Leitao, 1932, syn. n., Gonyleptes curvicornis Mello-Leitao, 1932, syn. n., Metagonyleptes hamatus Roewer, 1913, syn. n. and Paragonyleptes simoni Roewer, 1930, syn. n.; Gonyleptes pustulatus Sorensen, 1884 = Gonyleptes guttatus Roewer, 1917, syn. n.; Haversia defensa (Butler, 1876) = Sadocus vallentini Hogg, 1913, syn. n.; Liogonyleptoides minensis (Piza, 1946) = Currala bahiensis Soares, 1972, syn. n.; Megapachylus grandis Roewer, 1913 = Metapachyloides almeidai Soares & Soares, 1946, syn. n.; Mischonyx cuspidatus (Roewer, 1913) = Gonazula gibbosa Roewer, 1930 syn. n.; Mischonyx scaber (Kirby, 1819) = Xundarava holacantha Mello-Leitao, 1927, syn. n.; Parampheres tibialis Roewer, 1917 = Metapachyloides rugosus Roewer, 1917, syn. n.; Parapachyloides uncinatus (Sorensen, 1879) = Goyazella armata Mello-Leitao, 1931, syn. n.; Pseudopucrolia mutica (Perry, 1833) = Meteusarcus armatus Roewer, 1913, syn. n. The following new combinations are proposed: Acrographinotus ornatus (Roewer, 1929), comb. n. (ex Unduavius); Gonyleptellus bimaculatus (Sorensen, 1884), comb. n. (ex Gonyleptes); Gonyleptes perlatus (Mello-Leitao, 1935), comb. n. (ex Moojenia); Mischonyx scaber (Kirby, 1819), comb. n. (ex Gonyleptes); and Neopachyloides peruvianus (Roewer, 1956), comb. n. (ex Ceropachylus). The following species of Gonyleptidae, Gonyleptinae are revalidated: Gonyleptes atrus Mello-Leitao, 1923 and Gonyleptes curvicornis (Roewer, 1913).
Resumo:
Giesberteclipta and Thomasella, two new genera of Rhinotragini Thomson, 1861 (Coleoptera: Cerambycidae: Cerambycinae), are described and illustrated. Six new species are also described and illustrated: Acyphoderes violaceus from Costa Rica; Ischasioides giesberti from Ecuador, and Oxylymma pallida, Pseudagaone williamsi, Stultutragus tippmanni and S. ventriguttatus from Brazil. Keys are provided for the known species of Pseudagaone Tippmann, 1960, Giesberteclipta, and Oxylymma Pascoe, 1859 and for parts of Ischasioides Tavakilian & Penaherrera-Leiva, 2003 and Stultutragus Clarke, 2010. The following new combinations are proposed: Giesberteclipta costipennis (Giesbert, 1991); G. monteverdensis (Giesbert, 1991); Thomasella igniventris (Giesbert, 1991), and Stultutragus romani (Aurivillius, 1919). The following three new country records are reported: Oxylymma durantoni Penaherrera-Leiva & Tavakilian, 2003 (Brazil), Oxylymma sudrei Penaherrera-Leiva & Tavakilian, 2003 (Brazil), and Ommata (Eclipta) faurei Penaherrera-Leiva & Tavakilian, 2003, all from Brazil.
Resumo:
Hydrogamasellus alagoensis n. sp. is described based on the morphology of adult females and males collected from litter in the State of Alagoas, Brazil. Six new combinations are proposed, namely Acugamasus avium (Karg, 1976) n. comb., Ologamasus lanceolatus (Karg, 1976) n. comb., Ologamasus microcrinis (Karg, 1979) n. comb., Ologamasus testudinis (Karg, 1976) n. comb., Rykellus longopilus (Karg, 1976) n. comb. and Rykellus ubatubaensis (Hirschmann, 1966) n. comb., and a key for the separation of females of the eighteen recognizable world Hydrogamasellus species is provided.
Resumo:
While many developed countries have invested heavily in research on plant invasions over the last 50 years, the immense region of Latin America has made little progress. Recognising this, a group of scientists working on plant invasions in Latin America met in Chile in late 2010 to develop a research agenda for the region based on lessons learned elsewhere. Our three main findings are as follows. (1) Globalisation is inevitable, but the resultant plant introductions can be slowed or prevented by effective quarantine and early intervention. Development of spatially explicit inventories, research on the invasion process and weed risk assessments can help prioritise and streamline action. (2) Eradication has limited application for plants and control is expensive and requires strict prioritisation and careful planning and evaluation. (3) Accepting the concept of novel ecosystems, new combinations of native and introduced species that no longer depend on human intervention, may help optimise invasive species management. Our vision of novel ecosystem management is through actions that: (a) maintain as much native biodiversity and ecosystem functionality as possible, (b) minimise management intervention to invasives with known impact, and (c) maximise the area of intervention. We propose the creation of a Latin American Invasive Plants Network to help focus the new research agenda for member countries. The network would coordinate research and training and establish funding priorities, develop and strengthen tools to share knowledge, and raise awareness at the community, governmental and intergovernmental levels about the social, economic and environmental costs of plant invasions.
Resumo:
Objective: This study evaluated the performance of different adhesive systems in fiber post placement aiming to clarify the influence of different hydrophobic experimental blend adhesives, and of one commercially available adhesive on the frictional retention during a luting procedure. Material and Methods: One luting agent (70 Wt% BisGMA, 28.5% TEGDMA; 1.5% p-tolyldiethanolamine) to cement fiber posts into root canals was applied with 4 different adhesive combinations: Group 1: The etched roots were rinsed with water for 30 s to remove the phosphoric acid, then rinsed with 99.6% ethanol for 30 s, and blot-dried. A trial adhesive (base to catalyst on a 1: 1 ratio) was used with an experimental luting agent (35% Bis-GMA, 14.37% TEGDMA, 0.5% EDMAB, 0.13% CQ); Group 2: A trial adhesive (base to catalyst on a 1: 2 ratio) was luted as in Group 1; Group 3: One-Step Plus (OSP, Bisco Inc.) following the ethanol bonding technique in combination with the luting agent as in Group 1; Group 4: OSP strictly following the manufacturer's instructions using the luting agent as in Group 1. The groups were challenged with push-out tests. Posted root slices were loaded until post segment extrusion in the apical-coronal direction. Failure modes were analyzed under scanning electron microscopy. Results: Push-out strength was not significantly influenced by the luting agent (p>0.05). No statistically significant differences among the tested groups were found as Group 1 (Exp 1 - ethanol-wet bonding technique)=Group 2 (Exp 2 - ethanol-wet bonding technique)= Group 3 (OSP - ethanol-wet bonding technique)= Group 4 (control, OSP - water-wet bonding technique) (p>0.05). The dominating failure modes in all the groups were cohesive/adhesive failures, which were predominantly observed on the post/luting agent interface. Conclusions: The results of this study support the hypothesis that the proposal to replace water with ethanol to bond fiber posts to the root canal using highly hydrophobic resin is plausible, but this seems to be more the proof of a concept than a clinically applicable procedure.