4 resultados para New Jersey. National Guard

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (similar to 40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for giant magnetofossils, and that these organisms were globally distributed. Much more work is needed to understand the interplay between magnetofossil morphology, climate, nutrient availability, and environmental variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have implicated the dying cell as a potential reservoir of modified autoantigens that might initiate and drive systemic autoimmunity in susceptible hosts. A number of subunits of the exosome, a complex of 3'→5' exoribonucleases that functions in a variety of cellular processes, are recognized by the so-called anti-PM/Scl autoantibodies, found predominantly in patients suffering from an overlap syndrome of myositis and scleroderma. Here we show that one of these subunits, PM/Scl-75, is cleaved during apoptosis. PM/Scl-75 cleavage is inhibited by several different caspase inhibitors. The analysis of PM/Scl-75 cleavage by recombinant caspase proteins shows that PM/Scl-75 is efficiently cleaved by caspase-1, to a smaller extent by caspase-8, and relatively inefficiently by caspase-3 and caspase-7. Cleavage of the PM/Scl-75 protein occurs in the C-terminal part of the protein at Asp369 (IILD369↓G), and at least a fraction of the resulting N-terminal fragments of PM/Scl-75 remains associated with the exosome. Finally, the implications of PM/Scl-75 cleavage for exosome function and the generation of anti-PM/Scl-75 autoantibodies are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decade, molecular phylogenetics has called into question some fundamental aspects of coral systematics. Within the Scleractinia, most families composed exclusively by zooxanthellate species are polyphyletic on the basis of molecular data, and the second most speciose coral family, the Caryophylliidae (most members of which are azooxanthellate), is an unnatural grouping. As part of the process of resolving taxonomic affinities of caryophylliids', here a new Robust' scleractinian family (Deltocyathiidae fam. n.) is proposed on the basis of combined molecular (CO1 and 28S rDNA) and morphological data, accommodating the early-diverging clade of traditional caryophylliids (represented today by the genus Deltocyathus). Whereas this family captures the full morphological diversity of the genus Deltocyathus, one species, Deltocyathus magnificus, is an outlier in terms of molecular data, and groups with the Complex coral family Turbinoliidae. Ultrastructural data, however, place D.magnificus within Deltocyathiidae fam. nov. Unfortunately, limited ultrastructural data are as yet available for turbinoliids, but D.magnificus may represent the first documented case of morphological convergence at the microstructural level among scleractinian corals. Marcelo V.Kitahara, Centro de Biologia Marinha, Universidade de SAo Paulo, SAo SebastiAo, S.P. 11600-000, Brazil. E-mail:kitahara@usp.br

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-energy new method based in a one-step synthesis at room temperature produces very small maghemite nanopar ticles. The fast neutralization reaction (co-precipitation) of a ferric solution (FeCl3 aqueous) in a basic medium (NH4OH concentrated) produces an intermediate phase, presumably two-line ferrihydrite, that in oxidizing conditions is transformed to maghemite nanopar ticles. That “primordial soup” is characterized by small atom arrangements that are the base for maghemite tiny crystals. The final product of the reaction was characterized by X-ray diffraction, high-resolution transmission electron microscopy, X-ray absorption fine structure, Mössbauer spectroscopy, and magnetometry.