2 resultados para Neotoma floridana smalli

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazilian populations of the pathogenic fungus Neozygites floridana (Weiser & Muma) Remaudiere & S. Keller (Entomophthoromycotina: Entomophthorales) and the predatory mite Phytoseiulus longipes Evans (Acari: Phytoseiidae) are potential candidates for introduction into Africa for classical biological control of the tomato red spider mite, Tetranychus evansi Baker & Pritchard (Acari: Tetranychidae). The efficiency of these natural enemies against T. evansi has been demonstrated under laboratory conditions, but little is known about their performance on native Solanaceae in the field. The American nightshade, Solanum americanum Mill., is native to the Americas and may serve as an alternative host plant for T. evansi and its natural enemies in the absence of tomato plants. In this work, we studied the population dynamics of T. evansi and its natural enemies on S. americanum in a screen house, semi-field and field plots in Recife, Pernambuco, Brazil, to evaluate the potential of natural enemies for controlling T. evansi. Of the four natural enemies found in association with T. evansi, only N. floridana and P. longipes were clearly associated with the reduction of the populations of T. evansi. Neozygites floridana was observed in a screen house, semi-field and field plots, but P. longipes was only detected in the semi-field plots. Increases in the population of T. evansi were always followed by increases in the density of one of these natural enemies, suggesting that they were important factors regulating T. evansi populations on S. americanum. The presence of this host plant near the release sites in Africa thus might increase the chances for the permanent establishment of these natural enemies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new genus, Cradoscrupocellaria n. gen., is erected for Scrupocellaria bertholletii Audouin, 1826), reported as widespread in tropical and subtropical waters. Here we select a neotype of this species in order to establish its identity and distinguish it from morphologically similar species. We include redescriptions and figures of additional species now assigned to this new genus: Cradoscrupocellaria curacaoensis (Fransen, 1986) n. comb., Cradoscrupocellaria hirsuta (Jullien & Calvet, 1903) n. comb., and Cradoscrupocellaria macrorhyncha (Gautier, 1962) n. comb. Five additional species are assigned to the genus: Cradoscrupocellaria ellisi (Vieira & Spencer Jones, 2012) n. comb., Cradoscrupocellaria nanshaensis (Liu, 1991) n. comb., Cradoscrupocellaria reptans (Linnaeus, 1758) n. comb., Cradoscrupocellaria serrata (Waters, 1909) n. comb., and Cradoscrupocellaria tenuirostris (Osburn, 1950) n. comb. Eighteen new species are described: Cradoscrupocellaria aegyptiana n. sp., Cradoscrupocellaria arisaigensis n. sp., Cradoscrupocellaria atlantica n. sp., Cradoscrupocellaria calypso n. sp., Cradoscrupocellaria floridana n. sp., Cradoscrupocellaria galapagensis n. sp., Cradoscrupocellaria gautieri n. sp., Cradoscrupocellaria gorgonensis n. sp., Cradoscrupocellaria hastingsae n. sp., Cradoscrupocellaria insularis n. sp., Cradoscrupocellaria jamaicensis n. sp., Cradoscrupocellaria lagaaiji n. sp., Cradoscrupocellaria macrorhynchoides n. sp., Cradoscrupocellaria makua n. sp., Cradoscrupocellaria marcusorum n. sp., Cradoscrupocellaria normani n. sp., Cradoscrupocellaria odonoghuei n. sp., and Cradoscrupocellaria osburni n. sp.