4 resultados para Neodymium lasers

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dentine hypersensitivity (DH) is a painful condition and is a clinical challenge due to the different treatment strategies available. High-intensity lasers have been studied as a possible option. The aim of this randomized, controlled, double-blind clinical study was to evaluate the effects of Er:YAG and Er,Cr:YSGG lasers on DH. The study group comprised 28 subjects who met the inclusion criteria. A visual analogue scale was used to quantify sensitivity before treatment as baseline, immediately before and immediately after treatment, and 1 week and 1 month after treatment. Teeth were assigned to four groups: group 1 control (no treatment), group 2 Er:YAG laser treatment (2 Hz/32.4 mJ/5.9 J/cm(2)), group 3 Er,Cr:YSGG laser treatment (0.25 W/4.4 J/cm(2)), and group 4 Er,Cr:YSGG laser treatment (0.50 W/ 8.9 J/cm(2)). Data were collected and submitted to statistical analysis for both evaporative (air) and mechanical (probe) stimulation. For both the air and probe stimulation no differences were observed between the pretreatment sensitivities. With the evaporative stimulus, the pain level immediately after treatment was reduced; however, after this the values remained stable. Irradiation with the Er:YAG laser was associated with the lowest level of pain. With the mechanical stimulus, group 4 showed the most pronounced decrease in pain immediately after treatment; however, by the end of the study, pain levels had increased. Groups 1, 2 and 3 showed a reduction in pain that was significantly different from that in group 4 after the 4 weeks of clinical follow up. Based on the results and within the limits of this study, it can be concluded that none of the laser treatments studied was capable of completely eliminating pain, but the Er:YAG and Er,Cr:YSGG lasers are suitable for the treatment of DH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the high-resolution performance of the fragment separator FRS at GSI we have discovered 60 new neutron-rich isotopes in the atomic number range of 60 <= Z <= 78. The new isotopes were unambiguously identified in reactions with a U-238 beam impinging on a Be target at 1 GeV/nucleon. The production cross-section for the new isotopes have been measured down to the pico-barn level and compared with predictions of different model calculations. For elements above hafnium fragmentation is the dominant reaction mechanism which creates the new isotopes, whereas fission plays a dominant role for the production of the new isotopes up to thulium. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The purpose of this study was to investigate the rat skin penetration abilities of two commercially available low-level laser therapy (LLLT) devices during 150 sec of irradiation. Background data: Effective LLLT irradiation typically lasts from 20 sec up to a few minutes, but the LLLT time-profiles for skin penetration of light energy have not yet been investigated. Materials and methods: Sixty-two skin flaps overlaying rat's gastrocnemius muscles were harvested and immediately irradiated with LLLT devices. Irradiation was performed either with a 810 nm, 200mW continuous wave laser, or with a 904 nm, 60mW superpulsed laser, and the amount of penetrating light energy was measured by an optical power meter and registered at seven time points (range, 1-150 sec). Results: With the continuous wave 810nm laser probe in skin contact, the amount of penetrating light energy was stable at similar to 20% (SEM +/- 0.6) of the initial optical output during 150 sec irradiation. However, irradiation with the superpulsed 904 nm, 60mW laser showed a linear increase in penetrating energy from 38% (SEM +/- 1.4) to 58% (SEM +/- 3.5) during 150 sec of exposure. The skin penetration abilities were significantly different (p < 0.01) between the two lasers at all measured time points. Conclusions: LLLT irradiation through rat skin leaves sufficient subdermal light energy to influence pathological processes and tissue repair. The finding that superpulsed 904nm LLLT light energy penetrates 2-3 easier through the rat skin barrier than 810nm continuous wave LLLT, corresponds well with results of LLLT dose analyses in systematic reviews of LLLT in musculoskeletal disorders. This may explain why the differentiation between these laser types has been needed in the clinical dosage recommendations of World Association for Laser Therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the effect of Nd:YAG and argon laser irradiations on enamel demineralization after two different models to induce artificial caries. Background data: It is believed that the use of the high-intensity laser on the dental structure can lead to a more acid-resistant surface. Materials and methods: Twenty-one extracted human third molars were sectioned into tooth quarters. The quarters were distributed in three groups: Group I (control), untreated; Group II, Nd:YAG laser (60 mJ, 15 pps, 47.77 J/cm(2), 30 sec); and Group III, argon laser (250mW, 12 J/cm(2), 48 sec). Tooth quarters from each group were subjected to two different demineralization models: cycle 1, a 14 day demineralization (pH 4.5; 6 h) and remineralization (pH 7.0; 18 h) solutions, 37 degrees C and cycle 2, 48 h in demineralization solution (pH 4.5). Samples were prepared in slices (60-100 mu m thick) to be evaluated under polarized light microscopy. Demineralization areas were measured (mm(2)) (n = 11). Data were analyzed by ANOVA and Tukey's test (p < 0.05). Results: Means followed by different letters are significantly different: 0.25 A (control, cycle 48 h); 0.18 AB (control, cycle 14 days); 0.17 AB (Nd:YAG, cycle 14 days); 0.14 BC (argon, cycle 48 h); 0.09 BC (Nd:YAG, cycle 48 h), and 0.06 C (argon, cycle 14 days). Conclusions: The argon laser was more effective for caries preventive treatment than Nd: YAG laser, showing a smaller demineralization area in enamel.