7 resultados para Natural light
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Corrosion is a relevant issue regarding the problem of biodiesel compatibility with polymers and metals. This work aims to evaluate the influence of the natural light incidence and temperature in the corrosion rate of brass and copper immersed in commercial biodiesel as well as biodiesel degradation after the contact with metallic ions. The characterization of corrosion behavior was performed by weight loss measurements according to ASTM G1 and ASTM G31. The experiments according to ASTM G1 were performed at room temperature in light presence and absence. Experiments were also conducted at 55 degrees C in order to compare with ASTM G31 that is also performed at that temperature. The biodiesel degradation was characterized by water content, oxidation stability, viscosity as well as XRF, IR and Raman spectroscopies. The results of ASTM G1 tests showed that the thickness loss for both metals determined at room temperature is slightly higher when there is light incidence and these values significantly decrease for the highest temperature. The results of ASTM G31 tests indicated that air bubbling along with higher temperature affects mostly immersed samples. Biodiesel in contact with metals shows significant degradation in its properties as evidenced by increasing water content, higher viscosity and lower oxidation stability. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conclusions: Black individuals had greater prevalence of long face pattern, followed by Brown, White and Yellow individuals. The prevalence of long face pattern was 14.06% in which 13.39% and 0.68% belonged to moderate and severe subtypes, respectively.
Resumo:
EVAPORATIVE LIGHT-SCATTERING DETECTOR FOR ANALYSIS OF NATURAL PRODUCTS. The interest in the use of evaporative light scattering detector (ELSD) for the analysis of different classes of natural products has grown over the years. This is because this detector has become an excellent alternative compared to other types of detectors, such as the refractive index detector and the ultraviolet (UV) detector. This review describes the basic principles of ELSD functioning and discusses the advantages and disadvantages in using an ELSD for the analysis of organic compounds. Additionally, an overview, covering the last 23 years, of ELSD applications in natural products analysis (saponins, terpenes, carbohydrates, glycosides, alkaloids, steroids, flavonoids, peptides, polyketides, coumarins and iridoids) is presented and discussed.
Resumo:
The retaking of the ethanol program in the year 2003 as a fuel for light road transportation in Brazil through the introduction of flex fuel vehicles fleet was a good strategy to overcome the difficulties of the ethanol production sector and did work to increase its market share relative to gasoline. This process, however, may cause a future disequilibrium on the food production and on the refining oil derivates structure. In order to analyze the substitution process resultant of the competition between two opponents fighting for the same market, in this case the gasoline/ethanol substitution process, a method derived from the biomathematics based on the non-linear differential equations (NLDE) system is utilized. A brief description of the method is presented. Numerical adherence of the method to explain several substitution phenomena that occurred in the past is presented in the previous author`s paper, in which the urban gas pipeline system substitution of bottled LPG in the dwelling sector and the substitution of the urban diesel transportation fleet by compressed natural gas (CNG) buses is presented. The proposed method is particularly suitable for prospective analysis and scenarios assessment. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the present study, the daily relative growth rates (DRGR, in percent per day) of the red macroalga Gracilaria domingensis in synthetic seawater was investigated for the combined influence of five factors, i.e., light (L), temperature (T), nitrate (N), phosphate (P), and molybdate (M), using a statistical design method. The ranges of the experimental cultivation conditions were T, 18-26A degrees C; L, 74-162 mu mol photons m(-2) s(-1); N, 40-80 mu mol L-1; P, 8-16 mu mol L-1; and M, 1-5 nmol L-1. The optimal conditions, which resulted in a maximum growth rate of a parts per thousand yen6.4% d(-1) from 7 to 10 days of cultivation, were determined by analysis of variance (ANOVA) multivariate factorial analysis (with a 2(5) full factorial design) to be L, 74 mu mol photons m(-2) s(-1); T, 26A degrees C; N, 80 mu mol L-1; P, 8 mu mol L-1; and M, 1 nmol L-1. In additional, these growth rate values are close to the growth rate values in natural medium (von Stosch medium), i.e., 6.5-7.0% d(-1). The results analyzed by the ANOVA indicate that the factors N and T are highly significant linear terms, X (L), (alpha = 0.05). On the other hand, the only significant quadratic term (X (Q)) was that for L. Statistically significant interactions between two different factors were found between T vs. L and N vs. T. Finally, a two-way (linear/quadratic interaction) model provided a quite reasonable correlation between the experimental and predicted DRGR values (R (adjusted) (2) = 0.9540).
Resumo:
The ALICE experiment has measured low-mass dimuon production in pp collisions at root s = 7 TeV in the dimuon rapidity region 2.5 < y < 4. The observed dimuon mass spectrum is described as a superposition of resonance decays (eta, rho, omega, eta', phi) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for omega and phi are sigma(omega)(1 < p(t) < 5 GeV/c. 2.5 < y < 4) = 5.28 +/- 0.54(stat) +/- 0.49(syst) mb and sigma(phi)(1 < p(t) < 5 GeV/c. 2.5 < y < 4) = 0.940 +/- 0.084(stat) +/- 0.076(syst) mb. The differential cross sections d(2)sigma/dy dp(t) are extracted as a function of p(t) for omega and phi. The ratio between the rho and omega cross section is obtained. Results for the phi are compared with other measurements at the same energy and with predictions by models. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long-term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. The strong biosphere-atmosphere interaction is a key component of the ecosystem functioning. Two aerosol components are the most visible: The natural biogenic emissions of particles and VOCs, and the biomass burning emissions. Two aerosol and trace gases monitoring stations were operated for 4 years in Manaus and Porto Velho, two very distinct sites, with different land use change. Manaus is a very clean and pristine site and Porto Velho is representative of heavy land use change in Amazonia. Aerosol composition, optical properties, size distribution, vertical profiling and optical depth were measured from 2008 to 2012. Aerosol radiative forcing was calculated over large areas. It was observed that the natural biogenic aerosol has significant absorption properties. Organic aerosol dominates the aerosol mass with 80 to 95%. Light scattering and light absorption shows an increase by factor of 10 from Manaus to Porto Velho. Very few new particle formation events were observed. Strong links between aerosols and VOC emissions were observed. Aerosol radiative forcing in Rondonia shows a high -15 watts/m² during the dry season of 2010, showing the large impacts of aerosol loading in the Amazonian ecosystem. The increase in diffuse radiation changes the forest carbon uptake by 20 to 35%, a large increase in this important ecosystem.