2 resultados para Nanoelectronics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.
Resumo:
Vanadium oxide nanotubes constitute promising materials for applications in nanoelectronics as cathode materials, in sensor technology and in catalysis. In this work we present a study on hybrid vanadium oxide/hexadecylamine multiwall nanotubes doped with Co ions using state of the art x-ray diffraction and absorption techniques, to address the issue of the dopant location within the nanotubes' structure. The x-ray absorption near-edge structure analysis shows that the Co ions in the nanotubes are in the 2+ oxidation state, while extended x-ray absorption fine structure spectroscopy reveals the local environment of the Co2+ ions. Results indicate that Co atoms are exchanged at the interface between the vanadium oxide's layers and the hexadecylamines, reducing the amount of amine chains and therefore the interlayer distance, but preserving the tubular shape. The findings in this work are important for describing Co2+ interaction with vanadium oxide nanotubes at the molecular level and will help to improve the understanding of their physicochemical behavior, which is desired in view of their promising applications.