20 resultados para NONCONJUGATED COPOLYMERS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This work reports a detailed spectroscopy study of a series of multiblock conjugated nonconjugated copolymers built by p-phenylene vinylene type units (PV) and octamethylene spacers, namely, poly(1,8-octanedioxy-2,6-dimethoxy-1,4-phenylene-1,2-ethenylene) (LaPPS18). The relative proportions of the PV and aliphatic segments were estimated on the basis of solid-state NMR and Raman spectroscopy. The overall structure was characterized by wide angle X-ray diffraction; H-1 wide-line dipolar chemical shift correlation (DIPSHIFT), and centerband-only detection of exchange (CODEX) NMR data, that together with glass transition temperatures allowed us to identify the groups involved in the molecular dynamics. These different structural properties were used to explain the photoluminescence properties in terms of peak position and spectral profile
Resumo:
The synthesis and structural characterization of a europium complexed fluorene-bipyridine copolymer are described. A level of ion insertion of 80% in molar basis was achieved, and theoretical calculations showed that it required a twist of 179 degrees (49 kJ) between the pyridine units. Spectroscopy data showed that no electronic coupling between the main backbone and the complexation sites had occurred, but these hindered the interchain aggregation observed in the non complexed polymer. Preliminary electroluminescence studies showed that the EL and PL spectra are consistent, and that the ion had a trapping effect in the charge transport. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
PPV random derivates were synthesized and characterized. Polymer light emitting diodes (PLEDs) were assembled using the random copolymers as emissive layer and showed EL in the blue-green region in function of the method of preparation. The increase in the average conjugation degree in the polymer chain led to the reduction of the turn-on voltage of the device. The addition of Alq3 as ETL increased tenfold the luminescence efficiency. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ethylene-vinyl acetate copolymer (EVA) with 19% of vinyl acetate and its derivatives modified by hydrolysis of 50 and 100% of the initial vinyl acetate groups were used to produce blends with thermoplastic starch (TPS) plasticized with 30 wt% glycerol. The blends were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy. X-ray diffraction, water absorption, stress-strain mechanical tests, dynamic mechanical analysis and thermogravimetric analysis. In contrast to the blends with unmodified EVA. those made with hydrolyzed EVA were compatible, as demonstrated by the brittle fracture surface analysis and the results of thermal and mechanical tests. The mechanical characteristics and water absorption of the TPS were improved even with a small addition (2.5 wt%) of hydrolyzed EVA. The glass transition temperature rose with the degree of hydrolysis of EVA by 40 and 50 degrees, for the EVA with 50 and 100% hydrolysis, respectively. The addition of hydrolyzed EVA proved to be an interesting approach to improving TPS properties, even when very small quantities were used, such as 2.5 wt%. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
A new series of donor acceptor copolymers were synthesized via the Witting route and applied as an active layer in organic thin-films solar cells. These copolymers are composed of fluorene thiophene and phenylene thiophene units. The ratio between those was systematically varied, and copolymers containing 0%, 50%, and 75% of phenylene thiophene were characterized and evaluated when used in photovoltaic devices. The copolymers' composition, photophysical, electrical, and morphological properties are addressed and correlated with device performance. The 50% copolymer ratio was found to be the best copolymer of the series, yielding a power conversion efficiency (PCE) under air mass (AM) 1.5 conditions of 2.4% in the bilayer heterojunction with the C-60 molecule. Aiming at flexible electronics applications, solutions based on the heterojunction of this copolymer with PCBM (6,6-phenyl-C-61-butyric acid methyl ester) were also successfully deposited using an inkjet printing method and used as an active layer in solar cells.
Resumo:
Insect cuticular hydrocarbons including relatively non-volatile chemicals play important roles in cuticle protection and chemical communication. The conventional procedures for extracting cuticular compounds from insects require toxic solvents, or non-destructive techniques that do not allow storage of subsequent samples, such as the use of SPME fibers. In this study, we describe and tested a non-lethal process for extracting cuticular hydrocarbons with styrene-divinylbenzene copolymers, and illustrate the method with two species of bees and one species of beetle. The results demonstrate that these compounds can be efficiently trapped by ChromosorbA (R) (SUPELCO) and that this method can be used as an alternative to existing methods.
Resumo:
Fluorene-based polymers are widely known materials due to a combination of features such as photoluminescence and electroluminescence, oxidative stability, and film-forming ability. However, studies reporting nonlinear optical properties in this class of conjugated polymer are scarce. Here, we report a new class of polyfluorene derivatives poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-1,4-phenylenevinylene), poly(9,9'-n-dihexyl-2,7-fluorenedilvinylene-alt-2,5-thiophene), and poly[(9,9-di-hexylfluorenediylvinylene-alt-1,4-phenylenevinylene)-co-((9,9'-(3-t-butylpropanoate) fluorene-1,4-phenylene)] displaying high two-photon absorption (2PA) in the spectral range from a 490 to 1100 nm. The 2PA cross-section peak values for these materials are as high as 3000 Goppert Mayer (1 GM = 1 x 10-50 cm4 s/photon), which is related to the high degree of conjugation along the polymer backbone. The polymers that were used in this study presented a strong two-photon luminescence and also displayed optical limiting behavior, which, in combination with their well-established properties, make them highly suitable for nonlinear optical devices. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 148153, 2012
Resumo:
Phosphorylated poly(styrene-co-divinylbenzene) copolymers prepared by aromatic electrophilic substitution reaction with PCl3/AlCl3 were reacted with carbon dissulfite in order to introduce sulfophosphorylated groups into copolymers. These modifications were characterized by FTIR, elemental analysis, spectrophotometry, optical and scanning electron microscopy. The antibacterial activities of the phosphorylated and sulfophorylated copolymers were assessed against Escherichia coli ATCC25922 suspensions (10(3)-10(7) cells mL(-1)) using a column system. The unmodified copolymers did not have antibacterial activity against the E. coil suspensions but the phosphorylated and sulfophorylated copolymers showed significant bactericidal action for all E. coli concentrations. The sulfophosphorylated copolymers had higher antibacterial activity than the phosphorylated ones, mainly for high concentrations of E. coli cells. Published by Elsevier B.V.
Resumo:
Objectives: Nanofilled composite resins are claimed to provide superior mechanical properties compared with microhybrid resins. Thus, the aim of this study was to compare nanofilled with microhybrid composite resins. The null hypothesis was that the size and the distribution of fillers do not influence the mechanical properties of surface roughness and wear after simulated toothbrushing test. Material and methods: Ten rectangular specimens (15 mm x 5 mm x 4 mm) of Filtek Z250 (FZ2), Admira (A), TPH3 (T), Esthet-X (EX), Estelite Sigma (ES), Concept Advanced (C), Grandio (G) and Filtek Z350 (F) were prepared according to manufacturer's instructions. Half of each top surface was protected with nail polish as control surface (not brushed) while the other half was assessed with five random readings using a roughness tester (Ra). Following, the specimens were abraded by simulated toothbrushing with soft toothbrushes and slurry comprised of 2: 1 water and dentifrice (w/w). 100,000 strokes were performed and the brushed surfaces were re-analyzed. Nail polish layers were removed from the specimens so that the roughness (Ra) and the wear could be assessed with three random readings (mu m). Data were analyzed by ANOVA and Tukey's multiple-comparison test (alpha = 0.05). Results: Overall outcomes indicated that composite resins showed a significant increase in roughness after simulated toothbrushing, except for Grandio, which presented a smoother surface. Generally, wear of nanofilled resins was significantly lower compared with microhybrid resins. Conclusions: As restorative materials suffer alterations under mechanical challenges, such as toothbrushing, the use of nanofilled materials seem to be more resistant than microhybrid composite resins, being less prone to be rougher and worn.
Resumo:
Objectives: To evaluate the effect of additives on the water sorption characteristics of Bis-GMA based copolymers and composites containing TEGDMA, CH(3)Bis-GMA or CF(3)Bis-GMA. Material and methods: Fifteen experimental copolymers and corresponding composites were prepared combining Bis-GMA and TEGDMA, CH(3)Bis-GMA or CF(3)Bis-GMA, with aldehyde or diketone (24 and 32 mol%) totaling 30 groups. For composites, barium aluminosilicate glass and pyrogenic silica was added to comonomer mixtures. Photopolymerization was effected by 0.2 wt% each of camphorquinone and N,N-dimethyl-p-toluidine. Specimen densities in dry and water saturated conditions were obtained by Archimedes' method. Water sorption and desorption were evaluated in a desorption-sorption-desorption cycle. Water uptake (%WU), water desorption (%WD), equilibrium solubility (ES; mu g/mm(3)), swelling (f) and volume increase (%V) were calculated using appropriate equations. Results: All resins with additives had increased %WU and ES. TEGDMA-containing systems presented higher %WU, %WD, ES, f and %V values, followed by resins based on CH(3)Bis-GMA and CF(3)Bis-GMA. Conclusions: Aldehyde and diketone led to increases in the water sorption characteristics of experimental resins.
Resumo:
A general strategy for electrochemically induced assembly of coordination metallopolymers is demonstrated using the tritopic bridging [Ru-3(mu(3)-O)(CH3COO)(6)(pytpy)(3)](+) cluster complex, where pytpy is the 4'-(4-pyridyl)-2,2':6',2 ''-terpyridine ligand, and iron(III) ions. The concept of such an electrochemically induced coordinative assembly was proven exploring the large difference in the [Fe(pytpy)2 complex formation constants depending on the iron ion oxidation state. Much more stable bridging complexes are formed in the presence of Fe(II) in contrast to Fe(III) ions. The build-up of electrochemically active films on FTO electrodes was confirmed by the growth of the corresponding voltammetric peaks concomitantly with the rise of typical triruthenium cluster and [Fe(pytpy)(2)](2+) complex absorption bands. The metallopolymer was constituted by agglomerates of more or less fused tape like structures, exhibiting large voids and pinholes, as revealed by SEM and AFM images. The adhesion/deposition on FTO was improved by functionalizing the surface with TES-tpy and HOOC-tpy, which increased the surface coverage up to 80%, as estimated by impedance spectroscopy. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Blending polypropylene (PP) with biodegradable poly(3-hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene-g-maleic anhydride) (PPMAH), poly (ethylene-co-methyl acrylate) [P(EMA)], poly(ethylene-co-glycidyl methacrylate) [P(EGMA)], and poly(ethylene-co-methyl acrylate-co-glycidyl methacrylate) [P(EMAGMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(EMAGMA) > P(EMA) > P(EGMA) > PP-MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 3511-3519, 2012
Resumo:
Copolymers of norbornene (NBE) with norbomadiene (NBD) were obtained via ROMP with [RuCl2(PPh3)(2)(L)] type complexes as initiators (1 for L = piperidine and 2 for L = 3,5-Me(2)piperidine). The reactions were performed using a fixed quantity of NBE (5000 equivalents/[Ru]) for different concentrations of NBD (500, 1000, 1500 and 2000 equivalents/ [Ru]) in CHCl3, initiated with ethyl diazoacetate at room temperature. The presence of NBD in the NBE chains was characterized by H-1 and C-13 NMR. Whereas the copolymer microstructure was influenced neither by the NBD quantity nor by the initiator type, the N-n and PDI values were improved when increasing the NBD quantity in the medium. When raising the NBD amount, DMA results indicated increased cross-linking with increasing T-g and E ' storage modulus, as well as the fact that SEM micrographs indicated decreased pore sizes in the porous isolated copolymers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The emissive properties of terpolymers with fluorene, thiophene and phenylene groups, forming alternating PPV type structures, are discussed in terms of their composition, photo- and electroluminescence properties. The fluorene groups were inserted in each phenylene-vinylene and thiophene-vinylene units, and their concentration did not vary, representing 50% of the molar composition. The ratio of thiophene-vinylene/phenylene-vinylene varied in the range 25,50 and 75%. Photo- and electroluminescence properties were strongly dependent on the thiophene-vinylene content and were compared with the fluorene-vinylene-thiophene and fluorene-vinylene-phenylene parent copolymers. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The synthesis and photophysical characterization of a PPV-type copolymer containing a fluorene derivative alternated with thiophene units is presented: poly(9,9'-dioctylfluorene-thiophene) (LAPPS29). Photophysical studies demonstrated that in the solid state only preformed ground state aggregates are responsible for exciton formation. These aggregates are formed with a wide range of size distribution. The emission from isolated segments is quenched either by resonant energy transfer, or by migration processes. Also, the main photovoltaic parameters are discussed in connection with the photophysical behavior.